
 

 

Integrating Modern Model-based Development 
Concepts and Tools in a Programming Tools course 

 
Nannan He, Han-Way Huang  

Department of Electrical, Computer Engineering and Technology 
Minnesota State University, Mankato, MN 56001 

 
Abstract 
 
Software programming is often considered to be difficult for many engineering students. 
Nowadays, many control and automation systems are facing the increasingly sophisticated 
functional and non-functional demands. In such systems, software portion is always expected to 
have the greater impact. Therefore, educators continue to face great challenges in getting 
students to be capable of conducting efficient software development. In the last decade, model-
based design (MBD) is an emerging development methodology for modern software. Its 
efficiency has been demonstrated in large scale software engineering projects. This paper 
presents our experience of integrating modern MBD concepts and tools into a Programming 
Tools (PT) course. First, the basic components in the MBD process are exposed to students, 
especially its two unique components - automated code generation and model-based verification 
and validation (V&V). Second, three modeling languages: Matlab/Simulink, LabVIEW and 
SCADE are exposed to students.  They all have been widely applied in embedded control and 
automation domains. Third, input programming languages of these selected tools are introduced 
to students to help them apply the tools in the laboratory assignments and class project. 
 
Introduction 
 
Knowledge of computing and software programming is important to all engineering and 
technology students. The US Bureau of Labor Statistics predicts that computing will be one of 
the fastest-growing U.S. job markets in STEM through 2020: about 73% of all new STEM jobs 
will be computing related 1. More importantly, software development training could be a 
valuable experience for all engineer students, as it can cultivate student’ problem solving and 
process development capability.  
 
However, software programming is often considered to be difficult for engineering students.  
Engineering students usually study the syntax and semantics of low-level programming 
languages (PL) such as C or assembly in one or two semesters. They have fewer opportunities to 
apply the learnt programming skills compared with computer science or software engineering 
students. It is common for engineering students to forget the syntax of C language. When a class 
project involves software programming, students often spent a large amount of time in 
debugging syntax and semantics errors, with little time left for algorithm development and 
verification. Some engineering students consider writing a small program with 300 to 500 lines 
of code as a painful experience. And a large percentage of the junior or senior design projects 
that could not be accomplished on time are due to the prolonged software implementation stage. 
 

ASEE-NMWSC2013-0050

409



 

 

Model-based design (MBD) is an emerging methodology for developing complex software, 
especially embedded software. Its efficiency has been demonstrated in software engineering. For 
example, the Matlab/Simulink language from MathWorks that supports MBD has become the 
predominant software modeling language in many motion controls, aerospace and automotive 
applications. By promoting the use of domain-specific notations to graphically represent 
specifications and designs, MBD can identify design flaws at the early stage and avoid costly 
design fixes during the late stage. The implementation of the software system is either generated 
or derived manually from high-level models. Multiple large EU-funded research projects have 
been initiated to promote the application of MBD in industry, and target at solving the challenges 
encountered in different real-world application domains 2, 3, 4. 
 
This paper presents our experience of integrating the MBD knowledge into a Programming 
Tools (PT) course. This course is an elective for junior and senior computer engineering or 
electrical engineering students. Before taking this course, students have already had some 
programming experience. They have already learned to enter, compile, run, test, and debug 
programs. The objectives of the course include teaching students modern programming tools, 
and their usage in the design and implementation of electronic control systems or special-
purpose digital systems such as digital signal processing, etc. Traditionally, C/C++ was the 
programming language used by students to write programs to control or augment hardware, or 
perform numerical analysis in the course. LabVIEW as a graphical programming tool was also 
exposed to students. To improve this PT course, we add three MBD related topics: (i) MBD 
workflow especially the automated code generation and model-based verification. (ii) Three 
programming tools that support MBD: Matlab/Simulink from Mathworks, LabVIEW from 
National Instruments and Scade by Esterel Technologies; and (iii) Tools that support 
programming with these languages are introduced to students and applied in the laboratory 
assignments and class projects.  
 
Course Description 
 
Background 

 
Programming Tools (or with the similar name) is usually a required course for computer 
engineering or computer science major students, but an elective course for other engineering 
major students in many universities. It can be offered at the introductory level or the system 
level. At the introductory level, the PT course typically emphasizes the basic methodology and 
tools supporting program compiling, linking, test, debug and source code management 5. The PT 
course at the systems level often focuses on key concepts of low-level programming and explicit 
memory management (e.g., C or C++); tool chains for group software development; and 
advanced topics on software system design, implementation, testing strategies and 
documentation 6

. 

 
The PT course presented in this paper is closer to the systems level. It is organized as 2 hours of 
lecture and 2 hours of laboratory per week. At the end of the course, students are capable of 
utilizing existing programming tools to develop a complete hardware/software embedded 
system. Such a system is required to consist of three basic functions: (i) collect and store data 
inputs from a variety of sensor devices which are sensitive to the external environment, (ii) 

410



 

 

perform analysis and control algorithms, and (iii) control actuators to react to certain scenarios 
correctly and timely with respect to the requirement specification. In this course, C/C++, an 
imperative paradigm programming language, was solely chosen for coding. In many cases, after 
initiating the course project, students quickly move to the implementation stage after a brief 
design phase, and start the C programming and debugging iterations using an IDE. Although this 
approach works for the small-scale course project, students have reported that it is very time 
consuming and inefficient. And the behavior of the created system often deviates from the 
original design plan. Educators have recognized the need to introduce some efficient and cost-
effective programming tools to students 7. The goal is to equip students with the knowledge for 
developing complex engineering systems with a large number of constraints.  
 
Experts in the software engineering and computer science communities advocate introducing the 
MBD methodology to students. It provides students with the insights, techniques and tools to 
alleviate the difficulties of developing complex software systems. Educators have either 
integrated MBD into the existing software design course 8 or proposed a new project-based 
course to solely teach MBD 9. However, as these courses are mainly for computer science or 
software engineering students, their contents are too theoretical for engineering students who 
have limited software development background.  
 
The intent of the PT course presented in this paper is to convey the practical instead of 
theoretical knowledge related to programming to students. We added materials on MBD from the 
engineering practitioner’s point of view to the course with three objectives in mind. The first is 
to improve students’ awareness of the advanced MBD methodology. The second is for students 
to develop an appreciation for the MBD that will contribute to the efficient and cost-effective 
application development. The third is to give students the opportunity to learn modern 
programming tools enabling MBD. The following subsections present the three MBD topics 
added to the PT course, with the emphasis on the teaching approach and lab assignment design. 
 
Model-based Design Concept 

 
We introduced key MBD concepts that are important for an engineering practitioner to our 
students during the first week. Five basic steps in MBD approach from requirement analysis, 
system design, implementation, integration to continuous verification, are covered. Based on the 
MBD process illustrated in Figure 1, we discussed the differences between the MBD and the 
conventional software development processes like waterfall model to encourage active learning. 
For instance, without being taught, students can summarize by themselves that testing and 
verification is conducted continuously during each of the other four steps, not until their 
completion. Students are also guided to learn new concepts along each basic MBD step. Using 
System Design step as an example, students learn the concept of Executable Specification (in 
terms of models shown in Figure 1). It can unambiguously model the entire system functionality, 
including the environment, physical component and design algorithm. The created models have 
the benefits of improving communication and collaboration in the development team via sharing 
of models, and supporting early validation and testing via models simulation.  
 

411



 

 

Figure 1 Main steps in Model-based design process 

After introducing the basic concepts of MBD, we taught automated code generation and model-
based V&V.  Both can contribute to the improvement of the design, implementation and 
verification of safety-critical and security-critical embedded software.  
 
Automated code generation 
 
The use of automated code generation 
tools has been increasing in the last ten 
years. This is mainly because they help 
engineers faster and better develop 
documented software in comparison to 
hand coded development. It has two 
outstanding advantages: (i) Eliminate 
errors from hand-coding; (ii) Regenerate 
easily for different targets. Many 
engineers with limited programming 
experience could be greatly relieved 
from low-level programming, and focus 
on domain-specific problems. Moreover, 
depending on the application purposes, 
system design models are synthesized to 
different implementation languages. For 
example, programs coded in Structured 
Text (a language) are generated for the 
PLC applications; VHDL or Verilog code 
is generated for the models of the FPGA or 
ASIC. For MCU control or DSP application, the models are translated to C/C++. 
 
The purpose of formal verification of the specification models is to ensure the correctness of the 
design. Most high-level PLs like Matlab/Simulink are easy to use, but lack of rigorous semantics. 
Some researchers have investigated the automated transformation from Simulink to a formal 
language like Lustre, and applied the existing formal verification tools for checking the Lustre 
programs to formally verifying Simulink models 10.     
 
To give students a direct experience of automated code generation, the C code generated by a 
commercial tool Simulink Coder™ (formerly Real-Time Workshop®) and an open-source tool 
Gene-auto 11 are exposed to students. First, the comparison of the generated code is discussed in 
class. The C code generated from Simulink Coder is complex and hard to read. This is mainly 
due to the additional code injected into the C Code for the performance optimization or 
debugging purposes. The resultant code can be used for real-time and non-real-time applications, 
including simulation acceleration, rapid prototyping, etc. In contrast, the C code derived by 
Gene-auto could be clean and easy to trace back to the corresponding Simulink model blocks. 
The C code translated by Gene-auto is mainly for program verification. Thus, the focus is on the  
functional correctness rather than the execution performance. Next, the C code generated by the 
Gene-auto tool from Simulink design models is further studied for students to understand the 
details of automated code generation mechanism. Two translation examples are selected for case 

412



 

 

study: (i) the translation of basic logical operation blocks, arithmetic operation blocks and simple 
subsystems composed of these two kinds of blocks to C functions or statements; (ii) the 
translation of states and transitions in the Stateflow charts to C functions. For example, an 
addition “+” block with three inputs and one output could be translated to the C statement “o1 = 
in1 + in2 + in3”. Students are asked to prepare a class report on the comparison of different code 
generation tools. Some relevant research papers were also offered to the students who want to 
explore this topic further 12. This topic not only helps students understand automated code 
generation mechanism, but also convinces students the great enhancements led by the MBD 
approach in system development for engineers.   
 
Model-based validation and verification (V&V) 
 
Model-based V&V represents a set of V&V techniques continuously applied through the MBD. 
All of them contribute to three important goals/benefits: (i) Detect errors early in development; 
(ii) Reuse test throughout development process. (iii) Reduce use of physical prototypes. In this 
course, model-based V&V techniques/tools in three areas are provided to students. First, 
conventional quality control techniques in software engineering 13, 14 are recapped and compared. 
Validation targets at answering the question “Are we developing the right system?”, while 
verification aims at answering a different question “Are we developing the system right?” 
Formal methods and testing are two most popular approaches for verification. In mission-critical 
systems, where bugs may incur disastrous effects, formal methods are employed to guarantee the 
correct behavior with respect to the safety-critical requirement. In comparison, testing is scalable 
and easy to apply although it is limited to detect the bugs in a system, but cannot ensure the 
correctness. Unit testing, integration testing and system testing are three common testing 
practices in software systems development. The purpose is for students to clarify the typical 
usage and differences of these techniques.  
 
Second, V&V techniques applied at different MBD steps are discussed in class. During the initial 
requirement analysis step, a validator is applied to ensure that the extracted requirements 
correctly match the intended use. In the system design, a model tester or a simulator can be 
utilized to check whether Executable Specification satisfies the requirements obtained in the 
initial step. Unit testing is typically applied to check if the implementation coded in some low-
level languages is consistent with the design models. Integration testing and system testing are 
initiated from the integration step. Formal methods are applied to check critical components in 
the implementation. A translation validation tool, which formally verifies the translation from 
Simulink models to C, is introduced to students 16.  
 
Third, the latest advances of model-based testing MBT in both academy and industry are 
exposed to students. This is one of our new teaching endeavors in integrating an on-going 
research results into the advanced level or graduate level courses.  
 
MBD tools 
 
In the past, this PT course introduces some graphical programming tools used by electrical, 
control or automation engineers in the real-world 17, like LabVIEW to students. Although some 
of these tools have been extended to support the MBD approach, they were offered as the 

413



 

 

replacement of text-based programming only. Nowadays, there are many MBD tools available 
from both commercial and research communities. Some tools are designed with specific 
application in mind. For example, a survey of MBD tools used in the User Interface Design area 
has been reported 18.  Most students taking the PT class have some background in embedded 
systems, such as digital hardware, digital signal processing, or automation control. Thus, we are 
particularly interested in a class of MBD tools which have been used in the embedded systems 
area. Table 1 show a list of tools which are either open-source or free for education. 
 
 
Tools Vendor Models  

 
Code 
Generation 

Brief description 

LabVIEW NI “G”, a 
visual 
PL 
 

C/C++ etc. A system-design platform and development 
environment for dataflow and graphical 
programming widely used in data acquisition and 
embedded control and monitoring applications. 
http://www.ni.com/labview/ 

Simulink Mathworks Simulink C, Verilog, 
Structured 
text 

A block diagram environment for multi-domain 
simulation and MBD of dynamic systems, 
including a graphical editor and customizable block 
libraries. 
http://www.mathworks.com/products/simulink/ 

Scade Esterel Tech Lustre C A Lustre-based IDE for designing safety critical 
embedded software applications in reactive 
systems, and building formal models. 
http://www.esterel-
technologies.com/products/scade-suite/ 

Ptolemy II 19 Berkeley Variety 
of 
models 

Java, NesC A framework for hierarchical heterogeneity, i.e. 
heterogeneous modeling, simulation and design of 
concurrent embedded systems. 
http://www.ptolemy.eecs.berkeley.edu/ptolemyII/ 

eTrice Eclipse ROOMi Java, C, 
C++ 

An Eclipse project for embedded Model Driven 
Software Development based on ROOM. 
http://www.eclipse.org/etrice/ 

TOPCASED Airbus SysMLii, 
SAMiii , 
AADL iv 
UML 

Java, C, 
Python 

Eclipse based software environment dedicated to 
the realization of critical embedded systems; 
supporting formal checking. 
http://www.topcased.org/ 

Rational 
Rhapsody 
Designer 

IBM SysML, 
UML 

C, etc. A model-based system engineering environment 
included in IBM Rational Rhapsody family.  
http://www.ibm.com/developerworks/ 
rational/products/rhapsody/ 

EZRealtime UFAM/EMF PNMLv C A MDE-based tool based on timed Petri Net 
formalism for developing embedded and real-time 
systems. 
http://code.google.com/p/ezrealtime/ 

 

Table 1.  A list of MBD tools 

414



 

 

 
In this PT course, a survey of programming tools that support MBD, as shown in Table 1 is first 
introduced to students. Students are required to search for a new tool and prepare a 10-min 
presentation to introduce the tool they found to the whole class. The first three tools in the table 
are exposed to students. First, these three tools can support each step of the MBD process 
discussed in the previous subsection, including algorithm design, architecture design, system-
level design, model edit, simulation, automated code generation, continuous V&V, code 
debugging and deployment, system integration, etc. Second, they are industry supported and 
have been widely used in the embedded systems development in the real-world. It is important to 
equip students with such knowledge, especially after they graduate and enter the workplace. 
Third, they have well-documented tutorials and user manual, and even exercises. These 
resources are very helpful for the lecture notes preparation and assignments design. Fourth, these 
tools include rich example projects from simple to complex scale. They are very useful 
references for designing student projects. In order to advocate active learning, pre-lab 
assignments are made in this course. Hands-on learning through class projects is highly 
encouraged and will be the basis for instruction in this course. So far, students have developed 
and completed 3 capstone projects. Students can get long-time benefits from the efforts they 
make in “playing with” these tools, especially in terms of improving their work efficiency. 
 
Three Input Programming Languages 

 
Compared with low-level text-based programming like C/C++, the graphical programming with 
these three MBD tools is much easier to start with. But, the efficient programming with high-
level PLs is still a very demanding task. Besides a large amount of programming practices, it is 
also important to understand the library functions provided by the tools. In this paper, the 
primary experience of teaching design libraries is presented in the following. 
 
Simulink: A set of commonly used block types belong to a variety of Simulink libraries. So, ten 
tool-provided libraries are introduced to students: Math, Logic and Bit, Sinks, Sources, Ports & 
Subsystems, Discrete, Discontinuities, Signal Routing, Signal Attributes and Model Verification. 
Most students find that basic block types included in the first four libraries are relatively simple. 
They can learn these blocks’ specifications in a short time and quickly start doing exercises and 
lab assignments. The Ports & Subsystems library is reported being most difficult, at the same 
time the block types included in it are the most important to construct the complex and 
hierarchical designs. Thus, this library is the focus of our teaching. The block types belonging to 
the remaining five libraries are generally not complicated in terms of functionality, but the usage 

Tools Vendor Models  
 

Code 
Generation 

Brief description 

UPPAAL Uppsala 
Univ. & 
Aalborg 
Univ 

Networks of 
timed 
automata 

Real-time 
Java, etc. 

An integrated tool environment based on 
networks of timed automata for modeling, 
V&V of real-time systems.  
http://www.uppaal.org/ 

Qsys/SOPC 
Builder 

Altera IP functions, 
Subsystems 

Verilog, 
VHDL 

An integration tool for the hierarchical 
FPGA design by automated generation of 
interconnection logic and HDL code.  
http://www.altera.com/ 

415



 

 

they provide seldom occur in the text-based programming. Thus, it takes one lecture to introduce 
students these libraries.  
 
LabView: To equip students with the new dataflow programming knowledge of Labview, we 
focused on event-driven programming and the Programming category in the Functions Palette. 
First, event-driven programming is greatly needed in designing real-time applications. Different 
from conventional procedure-oriented programming, the execution flow is determined by events. 
The event structure of LabVIEW and common types of static or dynamic events are introduced. 
From the lab exercises grading, we find that students usually find event-programming difficult at 
first, either missing relevant events or taking a wrong action with respect to an event. After 
students get familiar with this new programming paradigm, most of them find it very useful in 
building embedded systems with timing constraints.   
 
Lustre/Scade: The main motivation of introducing Lustre is to help students be aware of a 
formal PL in MBD. The main instruction approach is using examples, instead of teaching its 
formal semantics, which is too overwhelming for non-CS students. The transformation from 
Simulink to Lustre and the supporting tools are also provided to students. 
 
At the end of the semester we did formal course evaluation and student outcomes assessment. In 
summary, students commented that the automated code generation and MBD tools taught in this 
course are most beneficial to them. For example, some students, who have used some functions 
of LabVIEW before taking this course, reported that this course gave them wider and much 
deeper understanding of this software tool in system development. We will accumulate more 
student feedbacks each year and keep track of how this course may help graduates in their 
practical work.  
 
Conclusion 
 
MBD is cost effective for developing complex and reliable-critical embedded systems. This 
paper presents our teaching experiences of integrating this new MBD paradigm into a system-
level Programming Tools course for CE and EE students. It mainly describes three new topics 
added to this PT course: MBD concepts, three common MBD tools and three input programming 
languages of these tools, especially from two aspects of course materials preparation and 
instruction approaches. In the future, students and our teachers will together create and gather 
more capstone projects related to MBD.  
 
 
References 
 
1. Link to US bureau of Labor Statistics: http://www.bls.gov/emp/ep_table_102.htm, a related Link to the market 

for computing careers: http://cs.calvin.edu/p/ComputingCareersMarket 
2. EU CESAR project (Cost-Efficient Methods and Processors for Safety Relevant Embedded Systems) 

http://www.cesarproject.eu/ 
3.  EU MOGENTES project (Model-based Generation of Tests for Dependable Embedded Systems) 

http://www.mogentes.eu/ 
4. SESAME project (A Model-driven Test Selection Process for Safety-critical Embedded Systems) 

http://wiki.lassy.uni.lu/projects/SESAME 

416



 

 

5. Aleman, J.L.F., "Automated Assessment in a Programming Tools Course," Education, IEEE Transactions on, 
vol.54, no.4, pp.576-581, Nov. 2011. 

6. Links to some system-level PT courses: http://www.cs.washington.edu/education/courses/cse374/; 
http://web.eecs.utk.edu/~huangj/cs360/ 
http://school.eecs.wsu.edu/undergraduate/cpts/courses/360 

7. Paul G. Flikkema. “Approaching the Design of Complex Engineered Systems: A Model-based Approach 
Informed by System Thinking”. Proceedings of ASEE PSW Conference, 2012.  

8. Peter J. Clarke, Yali Wu, Andrew A. Allen, and Tariq M. King, “Experiences of Teaching Model-driven 
Engineering in a Software Design Course”, ACM/IEEE Intl. conference on Model Driven Engineering 
Language and Systems, Oct. 2009.  

9. Mireille Blay-Fornarino. "Project-based teaching for Model-Driven Engineering", in Proceedings of the 
Promoting Software Modeling through Active Education, pages 69-75, Sept 2008. 

10. Joshi, A., Heimdahl, “Model-based safety analysis of Simulink models using SCADE design verifier”. 
Proceedings of Computer Safety, Reliability, and Security (SAFE-COMP). Volume 3688 of LNCS, Springer 
(2005). 

11. Gene-auto project. http://geneauto.gforge.enseeiht.fr/ 
12. Coelho da Silva Stanisce Correa, G., da Cunha, A.M., Vieira Dias, L.A., Saotome, O., "A comparison between 

automated generated code tools using model based development," Digital Avionics Systems Conference 
(DASC), 2011 IEEE/AIAA 30th , vol., no., pp.7E4-1-9, Oct. 2011. 

13. G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, “The Art of Software Engineering”, Hoboken, 
NJ:Wiley, 2004. 

14. R. Pressman, “Software Engineering: A Practitioner’s Approach”, New York: McGraw-Hill, 2009. 
15. Bran Selic, “The Pragmatics of Model-driven Development”, Software, IEEE, vol.20, no.5, pp.19-25, Sept.-Oct. 

2003. 
16. O. Strichman, M. Ryabtsev, “Translation validation: from Simulink to C”, Proceeding of Intl’ Computer Aided 

Verification conference, pp 696-701, 2009. 
17. Eduard Lunca, Silvlu Ursache and Oana Neascu, “Graphical Programming Tools for Electrical Engineering 

Higher Education”, International Journal of Online Engineering, Vol 7, No 1, 2011. 
18. J. L. Perez-Medina, S.D. Chessa, A. Front. “A survey of Model Driven Engineering Tools for User Interface 

Design”. Proceedings of Intl. conference on Task models and diagrams for user interface design, pp 84-97, 
2007. 

19. Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Sonia Sachs, Yuhong Xiong, 
Stephen Neuendorffer. "Taming heterogeneity - the Ptolemy approach". Proceedings of the IEEE, 91(1):127-
144, 2003. 
 

  
 
 
 

                                                           
i ROOM: Real-Time Object-Oriented Modeling 
ii SysML: Systems Modeling Language  
iii SAM: System Architecture Modeling 
iv AADL: Architecture Analysis and Design Language 
v PNML: Petri Nets based Model Language 

417

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

