S Proceedings,
4E> The 2013 ASEE North Midwest Section Conference, ASEE-NMWSC2013-0050
“a October 17-18, 2013, Fargo, North Dakota.

Integrating M odern M odel-based Development
Conceptsand Toolsin a Programming Tools cour se

Nannan He, Han-Way Huang
Department of Electrical, Computer Engineering &adhnology
Minnesota State University, Mankato, MN 56001

Abstract

Software programming is often considered to bedtiff for many engineering students.
Nowadays, many control and automation systemsaaiad the increasingly sophisticated
functional and non-functional demands. In suchesyist software portion is always expected to
have the greater impact. Therefore, educatorsrmamtio face great challenges in getting
students to be capable of conducting efficientvearfé development. In the last decade, model-
based design (MBD) is an emerging development ndetlbgy for modern software. Its
efficiency has been demonstrated in large scatevacé engineering projects. This paper
presents our experience of integrating modern MBBcepts and tools into a Programming
Tools (PT) course. First, the basic componentlénMBD process are exposed to students,
especially its two unique components - automatel® generation and model-based verification
and validation (V&V). Second, three modeling langeist Matlab/Simulink, LabVIEW and
SCADE are exposed to students. They all have aly applied in embedded control and
automation domains. Third, input programming larggsaof these selected tools are introduced
to students to help them apply the tools in thedatory assignments and class project.

Introduction

Knowledge of computing and software programminignigortant to all engineering and
technology students. The US Bureau of Labor Stegigtredicts that computing will be one of
the fastest-growing U.S. job markets in STEM thto@§20: about 73% of all new STEM jobs
will be computing relatedl More importantly, software development trainimgid be a
valuable experience for all engineer students;, ean cultivate student’ problem solving and
process development capability.

However, software programming is often consideceble difficult for engineering students.
Engineering students usually study the syntax antbstics of low-level programming
languages (PL) such as C or assembly in one oséntesters. They have fewer opportunities to
apply the learnt programming skills compared wibimputer science or software engineering
students. It is common for engineering studentsiget the syntax of C language. When a class
project involves software programming, studentsrofpent a large amount of time in
debugging syntax and semantics errors, with limhe left for algorithm development and
verification. Some engineering students considéingra small program with 300 to 500 lines

of code as a painful experience. And a large p¢agenof the junior or senior design projects
that could not be accomplished on time are dubd@tolonged software implementation stage.

409

Model-based design (MBD) is an emerging methodofogyleveloping complex software,
especially embedded software. Its efficiency hanlemonstrated in software engineering. For
example, the Matlab/Simulink language from MathViottkat supports MBD has become the
predominant software modeling language in many anatontrols, aerospace and automotive
applications. By promoting the use of domain-specibtations to graphically represent
specifications and designs, MBD can identify degigws at the early stage and avoid costly
design fixes during the late stage. The implementadf the software system is either generated
or derived manually from high-level models. Muleghrge EU-funded research projects have
been initiated to promote the application of MBOndustry, and target at solving the challenges
encountered in different real-world application dons? 34

This paper presents our experience of integratiegMBD knowledge into a Programming
Tools (PT) course. This course is an electivedaigr and senior computer engineering or
electrical engineering students. Before taking toisrse, students have already had some
programming experience. They have already leametter, compile, run, test, and debug
programs. The objectives of the course includehiegcstudents modern programming tools,
and their usage in the design and implementatigreaftronic control systems or special-
purpose digital systems such as digital signalgssing, etc. Traditionally, C/C++ was the
programming language used by students to writerprog to control or augment hardware, or
perform numerical analysis in the course. LabVIEAaraphical programming tool was also
exposed to students. To improve this PT coursegddethree MBD related topics: (i) MBD
workflow especially the automated code generatimhraodel-based verification. (ii) Three
programming tools that support MBD: Matlab/Simulinkm Mathworks, LabVIEW from
National Instruments and Scade by Esterel Techredpgnd (iii) Tools that support
programming with these languages are introducetlidents and applied in the laboratory
assignments and class projects.

Course Description
Background

Programming Tools (or with the similar name) isalua required course for computer
engineering or computer science major studentsametective course for other engineering
major students in many universities. It can berefieat the introductory level or the system
level. At the introductory level, the PT courseitglly emphasizes the basic methodology and
tools supporting program compiling, linking, ted¢bug and source code managemehhe PT
course at the systems level often focuses on kegepis of low-level programming and explicit
memory management (e.g., C or C++); tool chaingfoup software development; and
advanced topics on software system design, impl&tien, testing strategies and
documentatiof

The PT course presented in this paper is closetsystems level. It is organized as 2 hours of
lecture and 2 hours of laboratory per week. Atehd of the course, students are capable of
utilizing existing programming tools to develop@mplete hardware/software embedded
system. Such a system is required to consist eéthasic functions: (i) collect and store data
inputs from a variety of sensor devices which amesgive to the external environment, (ii)

410

perform analysis and control algorithms, and @ontrol actuators to react to certain scenarios
correctly and timely with respect to the requiretsgrecification. In this course, C/C++, an
imperative paradigm programming language, wassclebsen for coding. In many cases, after
initiating the course project, students quickly ma@ the implementation stage after a brief
design phase, and start the C programming and delmderations using an IDE. Although this
approach works for the small-scale course progtatients have reported that it is very time
consuming and inefficient. And the behavior of theated system often deviates from the
original design plan. Educators have recognizedhd®eal to introduce some efficient and cost-
effective programming tools to studeitJhe goal is to equip students with the knowlefige
developing complex engineering systems with a laxgeber of constraints.

Experts in the software engineering and computense communities advocate introducing the
MBD methodology to students. It provides students the insights, techniques and tools to
alleviate the difficulties of developing complexXtseare systems. Educators have either
integrated MBD into the existing software designrse® or proposed a new project-based
course to solely teach MB® However, as these courses are mainly for competence or
software engineering students, their contentsarehteoretical for engineering students who
have limited software development background.

The intent of the PT course presented in this pegterconvey the practical instead of
theoretical knowledge related to programming talstus. We added materials on MBD from the
engineering practitioner’s point of view to the cegiwith three objectives in mind. The first is

to improve students’ awareness of the advanced Mi#bhodology. The second is for students
to develop an appreciation for the MBD that wilhtgbute to the efficient and cost-effective
application development. The third is to give studeéhe opportunity to learn modern
programming tools enabling MBD. The following suttsens present the three MBD topics
added to the PT course, with the emphasis on #uhiteg approach and lab assignment design.

M odel-based Design Concept

We introduced key MBD concepts that are importantah engineering practitioner to our
students during the first week. Five basic stegdBBD approach from requirement analysis,
system design, implementation, integration to ecardgus verification, are covered. Based on the
MBD process illustrated in Figure 1, we discussetdifferences between the MBD and the
conventional software development processes likerfedl model to encourage active learning.
For instance, without being taught, students camsarize by themselves that testing and
verification is conducted continuously during eaflthe other four steps, not until their
completion. Students are also guided to learn reaweepts along each basic MBD step. Using
System Design step as an example, students leaootitept of Executable Specification (in
terms of models shown in Figure 1). It can unambigly model the entire system functionality,
including the environment, physical component aesigh algorithm. The created models have
the benefits of improving communication and collation in the development team via sharing
of models, and supporting early validation anditgstia models simulation.

411

After introducing the basic concepts of MBD, weghtiautomated code generation and model-
based V&V. Both can contribute to the improvemafithe design, implementation and
verification of safety-critical and security-crifiicembedded software.

i 1. Requirements Analysis
Automated code generation q y Validation
The use of automated code generation 2. Sysiem Design (Executable spec.)
tools has been increasing in the last ten | EnvironmentalModels |
years. This is mainly because they help [Prysical ComponentsModels | Model Tester | o
engineers faster and better develop : o
documented software in comparison to |__Agorthmbodels _| 3
hand coded development. It has two . z
! . s Code Generation s

outstanding advantages: (i) Eliminate z
errors from hand-coding; (ii) Regenerate 3. Implementation o
easily for different targets. Many CE-+ ;f;ﬁ)oL- Stfercet;feﬂ @
engineers with limited programming : §

i i MCU, FPGA, PLC =
;axpe:lencle coluld be grea}tly rehe(zjv]:ed e o Model-based | &
rom low-level programming, and focus Verification | 2
on domain-specific problems. Moreover, 4. Integration
depending on the application purposes, | Sofware niaration |
system design models are synthesized to :
different implementation languages. For | Hardware/Software Integration_|
example, programs coded in Structured | SystemIntegration & Calibration |

Text (a language) are generated for the) _ _ _
PLC applications; VHDL or Verilog code Figure 1 Main steps in Model-based design process
is generated for the models of the FPGA or

ASIC. For MCU control or DSP application, the maate translated to C/C++.

The purpose of formal verification of the specifioa models is to ensure the correctness of the
design. Most high-level PLs like Matlab/Simulinleagasy to use, but lack of rigorous semantics.
Some researchers have investigated the automatefdrmation from Simulink to a formal
language like Lustre, and applied the existing farerification tools for checking the Lustre
programs to formally verifying Simulink model$

To give students a direct experience of automabele generation, the C code generated by a
commercial tool Simulink Coder™ (formerly Real-Tindéorkshof®) and an open-source tool
Gene-autd! are exposed to students. First, the comparistimeofenerated code is discussed in
class. The C code generated from Simulink Codeonisplex and hard to read. This is mainly
due to the additional code injected into the C Clod¢he performance optimization or
debugging purposes. The resultant code can befaseshl-time and non-real-time applications,
including simulation acceleration, rapid prototygietc.In contrast, the C code derived by
Gene-auto could be clean and easy to trace bable trorresponding Simulink model blocks.
The C code translated by Gene-auto is mainly foggam verification. Thus, the focus is on the
functional correctness rather than the executiofopeance. Next, the C code generated by the
Gene-auto tool from Simulink design models is fartstudied for students to understand the
details of automated code generation mechanism.tiamglation examples are selected for case

412

study: (i) the translation of basic logical opavatblocks, arithmetic operation blocks and simple
subsystems composed of these two kinds of blocksftmctions or statements; (ii) the
translation of states and transitions in the Statetharts to C functions. For example, an
addition “+” block with three inputs and one outgould be translated to the C statement “01 =
inl +in2 + in3”. Students are asked to preparssaeport on the comparison of different code
generation tools. Some relevant research papersailsy offered to the students who want to
explore this topic furthef. This topic not only helps students understandraated code
generation mechanism, but also convinces studeeatgreat enhancements led by the MBD
approach in system development for engineers.

M odel-based validation and verification (V& V)

Model-based V&V represents a set of V&V techniqgoestinuously applied through the MBD.
All of them contribute to three important goals/bgts: (i) Detect errors early in development;
(i) Reuse test throughout development process R@duce use of physical prototypes. In this
course, model-based V&V techniques/tools in threasare provided to students. First,
conventional quality control techniques in softwangineering® “are recapped and compared.
Validation targets at answering the question “Ardeveloping theight system?”, while
verification aims at answering a different questidre we developing the systenght?”

Formal methods and testing are two most popularoagpes for verification. In mission-critical
systems, where bugs may incur disastrous effemtsidl methods are employed to guarantee the
correct behavior with respect to the safety-critteguirement. In comparison, testing is scalable
and easy to apply although it is limited to detbetbugs in a system, but cannot ensure the
correctness. Unit testing, integration testing system testing are three common testing
practices in software systems development. Thegsears for students to clarify the typical
usage and differences of these techniques.

Second, V&V techniques applied at different MBDpst@re discussed in class. During the initial
requirement analysis step, a validator is appleensure that the extracted requirements
correctly match the intended use. In the systengdea model tester or a simulator can be
utilized to check whether Executable Specificagatisfies the requirements obtained in the
initial step. Unit testing is typically applied theck if the implementation coded in some low-
level languages is consistent with the design nsodelegration testing and system testing are
initiated from the integration step. Formal methads applied to check critical components in
the implementation. A translation validation toehich formally verifies the translation from
Simulink models to C, is introduced to studelfits

Third, the latest advances of model-based testiBF M both academy and industry are
exposed to students. This is one of our new tegatmaeavors in integrating an on-going
research results into the advanced level or gradesél courses.

MBD tools

In the past, this PT course introduces some grapprogramming tools used by electrical,

control or automation engineers in the real-wéf/dike LabVIEW to students. Although some
of these tools have been extended to support the Effproach, they were offered as the

413

replacement of text-based programming only. Nowagthere are many MBD tools available
from both commercial and research communities. Sowle are designed with specific

application in mind. For example, a survey of MBIoIs used in the User Interface Design area
has been reportéd Most students taking the PT class have somegbackd in embedded
systems, such as digital hardware, digital signatg@ssing, or automation control. Thus, we are
particularly interested in a class of MBD tools efhhave been used in the embedded systems
area. Table 1 show a list of tools which are eith@n-source or free for education.

Table 1. A list of MBD tools

o

ock

of

~

Tools Vendor Models |Code Brief description
Generation
LabVIEW | NI “G”, a C/C++ etc | A systen-design platform and developme
visual environment for dataflow and graphical
PL programming widely used in data acquisition an
embedded control and monitoring applications.
http://www.ni.com/labview/
Simulink Mathworks | Simulink | C, Verilog, | A block diagram environment for mi-domain
Structured | simulation and MBD of dynamic systems,
text including a graphical editor and customizable bl
libraries.
http://www.mathworks.com/products/simulink/
Scad Esterel Tec | Lustre C A Lustre-based IDE for designing safety critic
embedded software applications in reactive
systems, and building formal models.
http://www.esterel-
technologies.com/products/scade-suite/
Ptolemy I1*° | Berkeley Variety |Java, Nes |A framework for hierarchical hetereneity, i.e.
of heterogeneous modeling, simulation and design
models concurrent embedded systems.
http://www.ptolemy.eecs.berkeley.edu/ptolemyl
eTrice Eclipse ROOM |Java, C An Eclipse projec for embedded Model Drive
C++ Software Development based on ROOM.
http://www.eclipse.org/etrice/
TOPCASEL | Airbus SysML', |Java, C Eclipse based software environment dedicate
SAM", | Python the realization of critical embedded systems;
AADL"Y supporting formal checking.
UML http://www.topcased.org/
Rational IBM SysML, |C, etc A mode-based system engineering environrr
Rhapsody UML included in IBM Rational Rhapsody family.
Designer http://www.ibm.com/developerworks/
rational/products/rhapsody/
EZRealtime¢ | UFAM/EMF |PNMLY |C A MDE-based tool based on timed Petri |

formalism for developing embedded and real-tin
systems.
http://code.google.com/p/ezrealtime/

414

Tools Vendor Models Code Brief description
Generation
UPPAAL Uppsal: Networks of |Rea-time An integrated tool envonment based c
Univ. & timed Java, etc. networks of timed automata for modeling,
Aalborg automata V&YV of real-time systems.
Univ http://www.uppaal.org/
QsysSOPC | Altera IP functions, | Verilog, An integration tool for the hierarchic
Builder Subsystems | VHDL FPGA design by automated generation of
interconnection logic and HDL code.
http://www.altera.com/

In this PT course, a survey of programming tooé gupport MBD, as shown in Table 1 is first
introduced to students. Students are requiredarcbdor a new tool and prepare a 10-min
presentation to introduce the tool they found ®whnole class. The first three tools in the table
are exposed to students. First, these three taalswupport each step of the MBD process
discussed in the previous subsection, includingrélgn design, architecture design, system-
level design, model edit, simulation, automatedecgeneration, continuous V&V, code
debugging and deployment, system integration,Sgcond, they are industry supported and
have been widely used in the embedded systemsageweht in the real-world. It is important to
equip students with such knowledge, especially #ftey graduate and enter the workplace.
Third, they have well-documented tutorials and usanual, and even exercises. These
resources are very helpful for the lecture noteparation and assignments design. Fourth, these
tools include rich example projects from simpletmplex scale. They are very useful
references for designing student projects. In oral@dvocate active learning, pre-lab
assignments are made in this course. Hands-onnhgatmrough class projects is highly
encouraged and will be the basis for instructiothia course. So far, students have developed
and completed 3 capstone projects. Students cdargetime benefits from the efforts they
make in “playing with” these tools, especially @rmhs of improving their work efficiency.

Three Input Programming L anguages

Compared with low-level text-based programming [€++, the graphical programming with
these three MBD tools is much easier to start vtlt, the efficient programming with high-
level PLs is still a very demanding task. Besidéage amount of programming practices, it is
also important to understand the library functiprsvided by the tools. In this paper, the
primary experience of teaching design librariggressented in the following.

Simulink: A set of commonly used block types belong to @tyiof Simulink libraries. So, ten
tool-provided libraries are introduced to studeMath, Logic and Bit, Sinks, Sources, Ports &
Subsystems, Discrete, Discontinuities, Signal RaytSignal Attributes and Model Verification.
Most students find that basic block types inclugethe first four libraries are relatively simple.
They can learn these blocks’ specifications in@tstime and quickly start doing exercises and
lab assignments. The Ports & Subsystems libramgperted being most difficult, at the same
time the block types included in it are the mogpamant to construct the complex and
hierarchical designs. Thus, this library is theuof our teaching. The block types belonging to
the remaining five libraries are generally not ctiocgted in terms of functionality, but the usage

415

they provide seldom occur in the text-based prognarg. Thus, it takes one lecture to introduce
students these libraries.

LabView: To equip students with the new dataflow prograngrknowledge of Labview, we
focused on event-driven programming and the Progniaig category in the Functions Palette.
First, event-driven programming is greatly neededasigning real-time applications. Different
from conventional procedure-oriented programmihg,éxecution flow is determined by events.
The event structure of LabVIEW and common typestatic or dynamic events are introduced.
From the lab exercises grading, we find that sttelesually find event-programming difficult at
first, either missing relevant events or takingramng action with respect to an event. After
students get familiar with this new programminggoligm, most of them find it very useful in
building embedded systems with timing constraints.

Lustre/Scade: The main motivation of introducing Lustre is teljp students be aware of a
formal PL in MBD. The main instruction approachusng examples, instead of teaching its
formal semantics, which is too overwhelming for @8 students. The transformation from
Simulink to Lustre and the supporting tools ar® gisovided to students.

At the end of the semester we did formal coursdéuatian and student outcomes assessment. In
summary, students commented that the automatedgesaation and MBD tools taught in this
course are most beneficial to them. For examplagsstudents, who have used some functions
of LabVIEW before taking this course, reported tifét course gave them wider and much
deeper understanding of this software tool in sgsdevelopment. We will accumulate more
student feedbacks each year and keep track of liewaurse may help graduates in their
practical work.

Conclusion

MBD is cost effective for developing complex antaiele-critical embedded systems. This
paper presents our teaching experiences of intagrttis new MBD paradigm into a system-
level Programming Tools course for CE and EE sttedéhmainly describes three new topics
added to this PT course: MBD concepts, three comihBD tools and three input programming
languages of these tools, especially from two aspefacourse materials preparation and
instruction approaches. In the future, studentscamdeachers will together create and gather
more capstone projects related to MBD.

References

1. Link to US bureau of Labor Statistidsttp://www.bls.gov/emp/ep_table 102.htmrelated Link to the market
for computing careersittp://cs.calvin.edu/p/ComputingCareersMarket

2. EU CESAR project (Cost-Efficient Methods and Preces for Safety Relevant Embedded Systems)
http://www.cesarproject.eu/

3. EU MOGENTES project (Model-based Generation of t§efor Dependable Embedded Systems)
http://www.mogentes.eu/

4. SESAME project (A Model-driven Test Selection Pmxefor Safety-critical Embedded Systems)
http://wiki.lassy.uni.lu/projects/SESAME

416

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

Aleman, J.L.F., "Automated Assessment in a Programgrools Course,Education, IEEE Transactions pn
vol.54, no.4, pp.576-581, Nov. 2011.

Links to some system-level PT coursep://www.cs.washington.edu/education/courses/tée3
http://web.eecs.utk.edu/~huangj/cs360/

http://school.eecs.wsu.edu/undergraduate/cpts/esiB80

Paul G. Flikkema. “Approaching the Design of Complengineered Systems: A Model-based Approach
Informed by System ThinkingProceedings of ASEE PSW Conferer@l 2.

Peter J. Clarke, Yali Wu, Andrew A. Allen, and TaM. King, “Experiences of Teaching Model-driven
Engineering in a Software Design Cours&CM/IEEE Intl. conference on Model Driven Enginegri
Language and Systen3ct. 2009.

Mireille Blay-Fornarino. "Project-based teaching for Model-Driven Engine€tingn Proceedings of the
Promoting Software Modeling through Active Eduaatisages 69-75, Sept 2008.

Joshi, A., Heimdahl, “Model-based safety analy$iSimulink models using SCADE design verifier”.
Proceedings of Computer Safety, Reliability, ancu8igy (SAFE-COMP)Volume 3688 of LNCS, Springer
(2005).

Gene-auto projechttp://geneauto.gforge.enseeiht.fr/

Coelho da Silva Stanisce Correa, G., da Cunha, AMdira Dias, L.A., Saotome, O., "A comparisonveeen
automated generated code tools using model baseelogenent,” Digital Avionics Systems Conference
(DASC), 2011 IEEE/AIAA 30thvol., no., pp.7E4-1-9, Oct. 2011.

G. J. Myers, C. Sandler, T. Badgett, and T. M. TasmThe Art of Software EngineerihgHoboken,
NJ:Wiley, 2004.

R. Pressman Software Engineering: A Practitioner’s ApprodchNew York: McGraw-Hill, 2009.

Bran Selic, “The Pragmatics of Model-driven Devetamt”, Software, IEEEv0I.20, no.5, pp.19-25, Sept.-Oct.
2003.

0. Strichman, M. Ryabtsev, “Translation validatifr@m Simulink to C”,Proceeding of Intl" Computer Aided
Verification conferenceyp 696-701, 2009.

Eduard Lunca, Silvlu Ursache and Oana Neascu, ‘fGcap Programming Tools for Electrical Engineering
Higher Education”|nternational Journal of Online Engineerinyol 7, No 1, 2011.

J. L. Perez-Medina, S.D. Chessa, A. Front. “A syreeModel Driven Engineering Tools for User Intcé
Design”. Proceedings of Intl. conference on Task models diagrams for user interface desigpp 84-97,
2007.

Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liapj¥n Liu, Jozsef Ludvig, Sonia Sachs, Yuhong Xion
Stephen Neuendorffer. "Taming heterogeneity - ttedekhy approach"Proceedings of the IEEB1(1):127-
144, 2003.

"ROOM: Real-Time Object-Oriented Modeling

it SysML: Systems Modeling Language

i SAM: System Architecture Modeling

v AADL: Architecture Analysis and Design Language
Y PNML: Petri Nets based Model Language

417

http://www.tcpdf.org

