
Incorporating On-going Verification & Validation Research to a
Reliable Real-Time Embedded Systems Course

Nannan He

Department of Electrical, Computer Engineering and Technology
Minnesota State University, Mankato, MN 56001

Abstract

This paper presents the enhancements to a senior-level and graduate-level course, Reliable Real-
time Embedded Systems, in terms of introducing advanced verification and validation (V&V)
approaches. Traditionally, this course covers the topics of fundamental principles in real-time
operation systems like scheduling with little emphasis on the design V&V. In order to equip
students with the advanced knowledge of developing reliable embedded systems, this course is
enhanced from two aspects. First, an on-going research project results on model-based testing
and formal methods are incorporated into this course. Model-based testing is an important
feature of Model-based Design (MBD) methodology, which can be used to check whether the
design model satisfies the functional or nonfunctional requirements like timing. An automated
formal method Model Checking, which is one of the most commonly used formal verification
techniques, is exposed to students. It has been applied to deriving test cases from real-time
design models. Second, students are introduced existing model checking tools like Uppaal and
CBMC. Such new enhancements could greatly help students grasp the comprehensive
knowledge of designing reliable embedded systems.

Introduction

Nowadays, embedded real-time computer system is playing an important role in many mission-
critical (‘mission’ refers to the safety, reliability and security here) applications. Examples can be
found in not only the controls of automotive, railways, aircraft and aerospace areas, but also the
medical devices, “intelligent” home, factories and other sectors in our daily lives. Recent new
processors and methods of processing, sensors, actuators, and communication infrastructure
enable a truly pervasive computing environment. With the increasing popularity of real-time
computer systems, their reliability is of paramount importance.

The normal execution of real-time systems must satisfy certain deadline constraints. For
example, the response time of a system, which is the time between the presentation of a set of
inputs and the realization of the required behavior, should be as short as 5 milliseconds. Thus,
the logical correctness of such systems is based on the functional correctness (i.e., the
correctness of outputs) as well as their timeliness. In mission-critical embedded real-time
systems, an error could potentially cause disastrous results or severe economic consequences.
Therefore, the correctness of embedded real-time systems must be rigorously validated and
verified before they are put into operation.

Model-based design is emerging development methodology applied in designing modern
embedded systems. It has an enormous potential for improving verification, testing and synthesis
of embedded systems. Continuous model-based verification and validation (V&V) is an

ASEE-NMWSC2013-0049

402

important feature of this methodology. Technically speaking, validation checks that the system
design specification meets the intended user requirements; verification checks that the system
built after each development step from system design, implementation and system integration,
satisfies the design specification. Testing and formal methods are two popular approaches in
verification. In the context of model-based testing, traditional code-based metrics are no longer
sufficient and accurate to estimate the efficiency of software testing. On the other hand, model
checking is a kind of formal methods that is particularly well suited to integration in MBD
paradigm. With little to no user interaction, a model checker exhaustively examines every
possible combination of system input and state, and proves or disprove that a set of properties is
true. A research project has been conducted in applying model checking to deriving test suite
from real-time system design models, so as to improve the quality of model-based testing. This
project is supported by the Faculty Research Fund in Minnesota State University at Mankato.

Technically speaking, the increasingly sophisticated functional and non-function demands, like
timeliness of an embedded real-time system, require engineers to be equipped with the advanced
V&V techniques. Model-based design methodology and model checking can be applied for the
rigorous and cost-effective construction and verification of embedded systems. This paper
presents our experience of introducing these techniques in the course “Real-time embedded
systems”. First, an overview of this new course is described. Next, two advanced verification
techniques - model-based testing and automated formal method model checking are presented.
The work of enriching the course contents with the assist of an on-going research project, which
has explored the synergistic results of combining both techniques, is then discussed. Two
verification tools supporting formal checking of embedded real-time software systems are also
exposed to students.

Overall Course Description

This Real-time Embedded Systems (RTES) course targets learning real-time systems design and
applications from the practitioner’s point of view. It has three objectives: i) improve students’
awareness of real-time specifications in critical embedded systems; ii) allow engineering student
to apply modern development tools to correctly designing and small-scale real-time systems
including both software system and hardware; iii) enable student to develop reliable real-time
applications to solve problems with specific timing requirements.

The topics covered in this course are grouped into seven top-level topics: 1) Fundamental
concepts in embedded real-time systems; 2) Hardware for real-time systems; 3) Real-time
operating systems; 4) Requirement engineering (formal or semi-formal methods); 5)
Performance analysis; 6) Application issues (i.e., design for fault tolerance, verification and
validation techniques); 7) Case studies.

The overall aim of this course is to equip students the knowledge of correctly designing real-time
systems and developing real-time applications to solve engineering problems in practice. Twelve
course learning outcomes are stem from this aim, classified into three core components:
1. To demonstrate the ability of correctly defining real-time systems
2. To demonstrate the ability of correctly designing real-time systems
3. To demonstrate the ability of basic real-time application development

403

Model-based Verification and Validation

Common development challenges exist in various embedded and real-time applications, ranging
from the automotive industry, avionics, control systems and consumer electronics. They include
the ever-increasing size and complexity of system, demands for reduced time to market, and
rapid changes in technology. At the same time, it is not accepted that these mission-critical
systems will contain a certain number of errors. Conventional quality assurance and testing
techniques are too expensive and ineffective.

MBD is a promising approach that can contribute significantly to solving these challenges. It
promotes the use of domain-specific models to graphically represent specifications and designs,
with the goal of early identifying design flaws (via model simulator and model checking) to
avoid costly late-stage design fixes. The Matlab/Simulink and LabVIEW are two popular system
design environments supporting MBD. Furthermore, to encounter the increasing complexity of
distributed embedded systems, some industrial research projects have investigated basic domain-
independent technology for moving from stand-alone to distributed architectures. A recent
European project DECOS 1 has developed the model-based tool-chain to accompany the
dependable and cost-effective system development process from design to system integration
deployment.

Model-based testing

Model-based testing is an important application of MBD for deriving test suite from design
models, which promises better scalability and is applicable before the implementation phase.
The test suite can be used to check whether the models meet user requirements or an
implementation is correct with respect to the design models. Model-based testing allows test
engineers to concentrate on the intellectual challenge of specifying and modeling the system
behavior at a high level of abstraction, instead of focusing on manual test-case generation and
manual test execution.

In the context of model-based testing, the question of suitable coverage metrics has to be
reconsidered. Coverage is an indicator of the testing quality, and determines when testing is
sufficient enough to stop. Traditional testing metrics, such as statement or branch coverage of the
code, are no longer sufficient and accurate to estimate the efficiency of software testing. This is
because the test cases are derived from the models instead of implementation source code.
Mutation coverage, which is a kind of fault-based coverage, can be applied in model-based
testing. With this coverage metric, the quality of the test suite is decided by two steps: 1) inject a
set of mutations (faults or small modifications) into the model (the mutated model is called
mutant), 2) measure which percentage of these mutations can be detected by exercising the test
cases. Here, a mutant is detected if by executing the same inputs, the mutant and the original
model can be observed to produce different outputs values or execution sequences. Generally
speaking, mutation-based test coverage can be more accurate than code-based coverage metrics
in the model-based testing setting. However, the generation of test-suite that achieves high
mutation coverage is quite challenging.

404

Several approaches have been proposed to the mutation-based test case generation for Simulink
models. For example, a formal technique - bounded model checking has been used to
automatically compute test suites for given fault models 2. Several optimizations, such as formal
concept analysis 3 has been applied to making the approach practical for realistic Simulink
programs and fault models, and to obtain accurate coverage measures. The problem of equivalent
mutation detection in mutation-based testing has been investigated to avoid redundant and
expensive search for the test cases which actually do not exist. 4

Formal verification and model checking

Formal methods and testing are two fundamental verification approaches. Formal methods aim at
proving the absence of errors with respect to specified properties; while testing attempts to show
the presence of errors in the system. Formal verification conducts an exploration of all the
possible behaviors based on formal models of the system and the formal specification of the
intended requirements. The main advantage of this verification approach is the completeness it
offers, which can eliminate the notion of inadequate coverage that conventional testing faces.
This feature is in great favor in safety and reliability critical embedded applications. More
importantly, some automated formal methods like model checking can be used to detect hard
corner-case errors, which are very difficult to be detected by testing alone. With the significant
advances in automated reasoning and computing capability of modern computers, formal
verification is no longer of academic interest only. But, the limited scalability is still the major
problem of most formal techniques in dealing with practical applications.

Introduced in 1981, model checking is one of the most commonly used formal verification
techniques in industry. The inventors of model checking have been recognized by the 2007 ACM
Turing award. This technique has been used to verify the specified property of the finite state
model defined by the system, through an explicit or implicit enumeration of all the reachable
states and behaviours. Model checking can be fully automatic without much expertise in formal
methods. It differs from testing as it aims at an exhaustive exploration of the state space of the
model, thereby providing a correctness guarantee that is rarely achieved by means of testing.
More importantly, when the models under verification fail to satisfy a given specification,
counterexamples can be generated, which illustrate the erroneous behaviours of the system
design. This information can be very valuable for debugging. Model checking has been
successfully applied to formally verifying the real-world hardware designs in industry. Many
researchers have explored its applications in software and system verification.

Bounded model checking (BMC) is a variation of model checking which restricts the space
exploration to execution traces up to a certain length k. It can provide a guarantee that the first k
execution steps of the system are correct with respect to the specified properties. If the properties
are not satisfied, BMC can automatically return a counterexample of the length at most k. The
ability to report counterexamples is the essential feature that has been used to generate test cases,
which will be discussed in the following subsection. With the recent dramatic advances in SAT-
solvers, BMC is becoming increasingly popular. SAT-solvers can decide the satisfiability of a
logic formula. A formula is satisfiable if an assignment exists under which the formula evaluates
to TRUE. If no such assignments exist, the formula is unsatisfiable. BMC has two main
advantages. First, the counterexamples with the shortest path can be found much faster compared

405

to symbolic model checking. Second, it needs much less space than model checking with other
symbolic methods.

Research on model-based testing of embedded real-time software

The primary goal of our research is to significantly enhance the performance of V&V of
embedded real-time software by means of the novel hybrid of static analysis and dynamic
analysis. Another goal is to leverage the research outcomes and modern tools to enrich the
contents of the senior and graduate courses with advanced V&V techniques.

Static analysis analyzes all possible program executions. This research explores model checking,
which is one of static analysis techniques for formal verification. As discussed earlier, it
exhaustively searches the entire state-space of a program for faults, and is therefore suitable for
searching corner-behavior, and complex concurrency errors. The main advantage of this
technique is that it produces a diagnostic counter-example in case the property is refuted. This
counter-example can be very helpful to diagnose and correct the error. On the other hand,
dynamic analysis runs/simulates a program and analyzes the properties of this running program.
Dynamic analysis techniques have been used since the early seventies, initially mainly for
performance analysis purpose. This research focuses on the techniques that analyze program
executions to detect derivations from specific requirements, like testing. The basic idea is to
receive events (i.e., test suite) from probes, run the system under analysis with these stimuli
events and compare the observed actual events on-the-fly with the expected outcomes derived
from the specification.

The combination of static and dynamic analysis techniques is an active research field which has
not been fully explored yet 6. An influential recent work combines test case generation and
model checking to systematically execute all feasible program paths 7. This approach – Directed
Automated Random Testing (DART) – was proposed by Microsoft Research. In practice,
directed search cannot explore all feasible program paths, but it can achieve much better
coverage than random testing, so it can find more bugs. In this research project, we further
explore this approach, and investigate the hybrid of static and dynamic analysis in the model-
based testing of embedded real-time software. One way is to use the counter-example generated
by bounded model checker for test suite generation. Formal methods are applied for two main
purposes: 1) Generate and utilize formal models of embedded real-time software to accurately
capture valid operation sequence of the software with respect to specifications. 2) Compute input
test sequences based on the counter-examples derived from the formal models to achieve
expected test coverage. These test sequences could be used as inputs stimuli for verifying the
software implementation.

Two formal verification tools

In this course, students are exposed the basic concepts of the advanced V&V techniques, which
have been investigated in this research project and have inspired our primary research direction.
Moreover, in order to encourage students to participate in this research project and ease the
application of these techniques to solve practical problems, two open source model checking
tools whose status are active are also introduced to students.

406

UPPAAL

UPPAAL is a well-known and widely used model checking tool for real-time systems 8. It is
jointly developed by Aalborg University, Denmark, and Uppsala University, Sweden. With
UPPAAL, the behavior of timed systems can be graphically modeled using the timed automata
formalism extended with various modeling features. For example, concurrency and C-like
functions and data structures are added to make it practically expressive and user-friendly. This
tool consists of a graphical editor and simulator, and a model-checker. This checker performs an
exhaustive symbolic analysis of the model and provides either a proof that the model satisfies a
property, or a counter-example including a trace of actions and delays exemplifying how the
property is violated. It has been applied successfully to a variety of industrial cases.

Recently, this tool was extended with new functions for test generation and controller synthesis.
The ultimate goal of these updates is to enhance UPPAAL as an integrated tool suite for the
MBD development lifecycle of embedded real-time systems

CBMC

CBMC is a bounded model checker for software verification. It can take as input a low-level
ANSI-C program and, formally check safety properties like the correct usage of pointer
constructs, array bounds and user-provided C assertions. Given a program C, a property P and a
bound k, the verification includes three steps: i) unrolling k times all loops structures in C; then
ii) translating the resulting program without loops and property into a Boolean formula in
Conjunctive Normal Form (CNF); and finally (iii) giving the result to a SAT solver like MiniSat.
If the SAT solver returns false, the property holds, otherwise the property does not hold within
the bound k. This tool is developed and maintained by the Formal Verification Group from
Oxford University, UK. This tool can be used to directly verify safety-critical properties in the
implementation source code and indirectly verify high-level language models like Simulink after
being transformed into C code.

Conclusions

The paper describes the introduction of advanced verification and validation techniques to a real-
time embedded systems course. Since embedded real-time computer systems are becoming more
popular their reliability is of paramount importance. The paper presents the Model-based design
(MBD) methodology, especially model-based testing and model checking techniques that have
great potential for the rigorous verification of embedded real-time systems. Two verification
tools are also exposed to students to help them utilize these tools for conducting research and for
solving practical problems at work.

407

References

1. The DECOS European project, http://www.decos.at
2. Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Rummer, P., Weissenbacher, G. “Mutation-

based test case generation for Simulink models”. In proceedings of Formal Methods for Components and
Objects (FMCO). LNCS, vol. 6286, pp. 208-227. Springer, 2009.

3. He, N., Rummer, P., Kroening, D. “Test-case generation for embedded Simulink via formal concept analysis”.
In the proceedings of Design Automation Conference, 2011.

4. A. F. Donaldson, N. He, D. Kroning, P. Rummer. “Tightening test coverage metrics: a case study in
equivalence checking using k-induction”. In proceedings of Formal Methods for Components and Objects
(FMCO). Springer, 2012.

5. E. M. Clarke, Jr., O. Grumberg and D. A. Peled, “Model Checking”, MIT Press, 1999, ISBN 0-262-03270-8.
6. Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In WODA: ICSE Workshop on Dynamic

Analysis, pp 24-27, 2003.
7. 8. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random testing. In

Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005.

8. UPPAAL tool, http://www.uppaal.com/
9. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In TACAS, pages 168-176.

Springer, 2004.

408

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

