S Proceedings,
4E> The 2013 ASEE North Midwest Section Conference, ASEE-NMWSC2013-0049
“a October 17-18, 2013, Fargo, North Dakota.

I ncor por ating On-going Verification & Validation Research to a
Reliable Real-Time Embedded Systems Course

Nannan He
Department of Electrical, Computer Engineering &adhnology
Minnesota State University, Mankato, MN 56001

Abstract

This paper presents the enhancements to a sen@raled graduate-level course, Reliable Real-
time Embedded Systems, in terms of introducing aded verification and validation (V&V)
approaches. Traditionally, this course covers dipecs of fundamental principles in real-time
operation systems like scheduling with little engikan the design V&V. In order to equip
students with the advanced knowledge of develophgble embedded systems, this course is
enhanced from two aspects. First, an on-going resgmoject results on model-based testing
and formal methods are incorporated into this cauvtodel-based testing is an important
feature of Model-based Design (MBD) methodologyichltan be used to check whether the
design model satisfies the functional or nonfur@laequirements like timing. An automated
formal method Model Checking, which is one of thest.commonly used formal verification
techniques, is exposed to students. It has bedredyp deriving test cases from real-time
design models. Second, students are introducetireximodel checking tools like Uppaal and
CBMC. Such new enhancements could greatly helpestsdyrasp the comprehensive
knowledge of designing reliable embedded systems.

Introduction

Nowadays, embedded real-time computer system ysnglan important role in many mission-
critical (‘mission’ refers to the safety, relialyliand security here) applications. Examples can be
found in not only the controls of automotive, ralyg, aircraft and aerospace areas, but also the
medical devices, “intelligent” home, factories attler sectors in our daily lives. Recent new
processors and methods of processing, sensorgt@suand communication infrastructure
enable a truly pervasive computing environmenthwhe increasing popularity of real-time
computer systems, their reliability is of paramommportance.

The normal execution of real-time systems mussBatiertain deadline constraints. For
example, the response time of a system, whicheisitiie between the presentation of a set of
inputs and the realization of the required behadbould be as short as 5 milliseconds. Thus,
the logical correctness of such systems is baséldeofunctional correctness (i.e., the
correctness of outputs) as well as their timelinesmission-critical embedded real-time
systems, an error could potentially cause disastresults or severe economic consequences.
Therefore, the correctness of embedded real-tirses must be rigorously validated and
verified before they are put into operation.

Model-based design is emerging development metbgga@pplied in designing modern

embedded systems. It has an enormous potentiahfisoving verification, testing and synthesis
of embedded systems. Continuous model-based \a&idicand validation (V&V) is an

402

important feature of this methodology. Technicalheaking, validation checks that the system
design specification meets the intended user remugnts; verification checks that the system
built after each development step from system desngplementation and system integration,
satisfies the design specification. Testing anchedrmethods are two popular approaches in
verification. In the context of model-based testimgditional code-based metrics are no longer
sufficient and accurate to estimate the efficieocgoftware testing. On the other hand, model
checking is a kind of formal methods that is patady well suited to integration in MBD
paradigm. With little to no user interaction, a rabdhecker exhaustively examines every
possible combination of system input and state,ades or disprove that a set of properties is
true. A research project has been conducted iryaqgpinodel checking to deriving test suite
from real-time system design models, so as to irgtbe quality of model-based testing. This
project is supported by the Faculty Research FarMinnesota State University at Mankato.

Technically speaking, the increasingly sophistiddtenctional and non-function demands, like
timeliness of an embedded real-time system, requigineers to be equipped with the advanced
V&YV techniques. Model-based design methodology rmwedel checking can be applied for the
rigorous and cost-effective construction and veatfion of embedded systems. This paper
presents our experience of introducing these tegclasi in the course “Real-time embedded
systems”. First, an overview of this new coursdascribed. Next, two advanced verification
techniques - model-based testing and automatedafarrathod model checking are presented.
The work of enriching the course contents withdhsist of an on-going research project, which
has explored the synergistic results of combiniatdy bechniques, is then discussed. Two
verification tools supporting formal checking of leedded real-time software systems are also
exposed to students.

Overall Course Description

This Real-time Embedded Systems (RTES) coursettalggrning real-time systems design and
applications from the practitioner’s point of vielivhas three objectives: i) improve students’
awareness of real-time specifications in criticabedded systems; ii) allow engineering student
to apply modern development tools to correctly gieisig and small-scale real-time systems
including both software system and hardware; nlde student to develop reliable real-time
applications to solve problems with specific timmegjuirements.

The topics covered in this course are groupedsat@n top-level topics: 1) Fundamental
concepts in embedded real-time systems; 2) Hardfgareal-time systems; 3) Real-time
operating systems; 4) Requirement engineering @bonsemi-formal methods); 5)
Performance analysis; 6) Application issues (design for fault tolerance, verification and
validation techniques); 7) Case studies.

The overall aim of this course is to equip studémesknowledge of correctly designing real-time
systems and developing real-time applications bkeesengineering problems in practice. Twelve
course learning outcomes are stem from this aiassdied into three core components:

1. To demonstrate the ability of correctly defininglséme systems

2. To demonstrate the ability of correctly designiaglttime systems

3. To demonstrate the ability of basic real-time aggiion development

403

M odel-based Verification and Validation

Common development challenges exist in various eladxt and real-time applications, ranging
from the automotive industry, avionics, controlteyss and consumer electronics. They include
the ever-increasing size and complexity of syswemands for reduced time to market, and
rapid changes in technology. At the same times, iitat accepted that these mission-critical
systems will contain a certain number of errorsa@mtional quality assurance and testing
techniques are too expensive and ineffective.

MBD is a promising approach that can contributaidicantly to solving these challenges. It
promotes the use of domain-specific models to dcali represent specifications and designs,
with the goal of early identifying design flaws guinodel simulator and model checking) to
avoid costly late-stage design fixes. The Matlai(8ink and LabVIEW are two popular system
design environments supporting MBD. Furthermoresrtoounter the increasing complexity of
distributed embedded systems, some industrial refsg@aojects have investigated basic domain-
independent technology for moving from stand-altandistributed architectures. A recent
European project DECO'Shas developed the model-based tool-chain to acanyniie
dependable and cost-effective system developmeneps from design to system integration
deployment.

M odel-based testing

Model-based testing is an important applicatioM&D for deriving test suite from design
models, which promises better scalability and igliapble before the implementation phase.
The test suite can be used to check whether thelsateet user requirements or an
implementation is correct with respect to the desigpdels. Model-based testing allows test
engineers to concentrate on the intellectual chgeof specifying and modeling the system
behavior at a high level of abstraction, insteatbotising on manual test-case generation and
manual test execution.

In the context of model-based testing, the quesifauitable coverage metrics has to be
reconsidered. Coverage is an indicator of thertggjuality, and determines when testing is
sufficient enough to stop. Traditional testing nestrsuch as statement or branch coverage of the
code, are no longer sufficient and accurate tonegé the efficiency of software testing. This is
because the test cases are derived from the miodedad of implementation source code.
Mutation coverage, which is a kind of fault-baseslerage, can be applied in model-based
testing. With this coverage metric, the qualitytiod test suite is decided by two steps: 1) inject a
set of mutations (faults or small modificationgpithe model (the mutated model is called
mutant), 2) measure which percentage of these mngatan be detected by exercising the test
cases. Here, a mutantdetected if by executing the same inputs, the mutant aeditiginal

model can be observed to produlcierent outputs values or execution sequences. Generally
speaking, mutation-based test coverage can be awotgate than code-based coverage metrics
in the model-based testing setting. However, theegdion of test-suite that achieves high
mutation coverage is quite challenging.

404

Several approaches have been proposed to the omitetsed test case generation for Simulink
models. For example, a formal technique - boundedainchecking has been used to
automatically compute test suites for given faubidels®>. Several optimizations, such as formal
concept analysishas been applied to making the approach pradticagalistic Simulink

programs and fault models, and to obtain accu@aterage measures. The problem of equivalent
mutation detection in mutation-based testing hanlwevestigated to avoid redundant and
expensive search for the test cases which actdalhot exist?

Formal verification and model checking

Formal methods and testing are two fundamentafieation approaches. Formal methods aim at
proving the absence of errors with respect to $ipecproperties; while testing attempts to show
the presence of errors in the system. Formal eatitin conducts an exploration of all the
possible behaviors based on formal models of teeesyand the formal specification of the
intended requirements. The main advantage of #ri§ication approach is the completeness it
offers, which can eliminate the notion of inadeguatverage that conventional testing faces.
This feature is in great favor in safety and raligbcritical embedded applications. More
importantly, some automated formal methods like ehatiecking can be used to detect hard
corner-case errors, which are very difficult todstected by testing alone. With the significant
advances in automated reasoning and computing itigpabmodern computers, formal
verification is no longer of academic interest odyt, the limited scalability is still the major
problem of most formal techniques in dealing withgtical applications.

Introduced in 1981, model checking is one of thesteommonly used formal verification
techniques in industry. The inventors of model &ireg have been recognized by the 2007 ACM
Turing award. This technique has been used toywrd specified property of the finite state
model defined by the system, through an explicitrgolicit enumeration of all the reachable
states and behaviours. Model checking can be &ultpmatic without much expertise in formal
methods. It differs from testing as it aims at &haistive exploration of the state space of the
model, thereby providing a correctness guarantaegirarely achieved by means of testing.
More importantly, when the models under verificatfail to satisfy a given specification,
counterexamples can be generated, which illustn@erroneous behaviours of the system
design. This information can be very valuable febugging. Model checking has been
successfully applied to formally verifying the rebrld hardware designs in industry. Many
researchers have explored its applications in soévand system verification.

Bounded model checking (BMC) is a variation of mazteecking which restricts the space
exploration to execution traces up to a certaigtiek. It can provide a guarantee that the first
execution steps of the system are correct withesp the specified properties. If the properties
are not satisfied, BMC can automatically returroarderexample of the length at m&sihe

ability to report counterexamples is the essefe@ure that has been used to generate test cases,
which will be discussed in the following subsecti@vith the recent dramatic advances in SAT-
solvers, BMC is becoming increasingly popular. Sgdlvers can decide the satisfiability of a

logic formula. A formula is satisfiable if an assigent exists under which the formula evaluates
to TRUE. If no such assignments exist, the fornsilansatisfiable. BMC has two main
advantages. First, the counterexamples with theestgath can be found much faster compared

405

to symbolic model checking. Second, it needs mash space than model checking with other
symbolic methods.

Resear ch on model-based testing of embedded real-time software

The primary goal of our research is to significarthhance the performance of V&V of
embedded real-time software by means of the noxidhof static analysis and dynamic
analysis. Another goal is to leverage the reseanttomes and modern tools to enrich the
contents of the senior and graduate courses withreed V&V techniques.

Static analysis analyzes all possible program di@ta This research explores model checking,
which is one of static analysis techniques for falreerification. As discussed earlier, it
exhaustively searches the entire state-space mfgagm for faults, and is therefore suitable for
searching corner-behavior, and complex concurren@ys. The main advantage of this
technique is that it produces a diagnostic couexample in case the property is refuted. This
counter-example can be very helpful to diagnosecancéct the error. On the other hand,
dynamic analysis runs/simulates a program and aeslihe properties of this running program.
Dynamic analysis techniques have been used sieocesitty seventies, initially mainly for
performance analysis purpose. This research foarsé techniques that analyze program
executions to detect derivations from specific nequents, like testing. The basic idea is to
receive events (i.e., test suite) from probes thersystem under analysis with these stimuli
events and compare the observed actual eventseeihytivith the expected outcomes derived
from the specification.

The combination of static and dynamic analysisnepes is an active research field which has
not been fully explored yét An influential recent work combines test caseegation and

model checking to systematically execute all fdagiipogram path& This approach — Directed
Automated Random Testing (DART) — was proposed prddoft Research. In practice,
directed search cannot explore all feasible progvaths, but it can achieve much better
coverage than random testing, so it can find magsbin this research project, we further
explore this approach, and investigate the hybrstatic and dynamic analysis in the model-
based testing of embedded real-time software. Cneisvto use the counter-example generated
by bounded model checker for test suite generaiormal methods are applied for two main
purposes: 1) Generate and utilize formal modebnabedded real-time software to accurately
capture valid operation sequence of the softwatle kespect to specifications. 2) Compute input
test sequences based on the counter-examplesdal&owe the formal models to achieve
expected test coverage. These test sequenceshmuked as inputs stimuli for verifying the
software implementation.

Two formal verification tools

In this course, students are exposed the basieptsof the advanced V&V techniques, which
have been investigated in this research projechand inspired our primary research direction.
Moreover, in order to encourage students to padteiin this research project and ease the
application of these techniques to solve pracpcablems, two open source model checking
tools whose status are active are also introduzstutents.

406

UPPAAL

UPPAAL is a well-known and widely used model checkiool for real-time systenfs|t is

jointly developed by Aalborg University, DenmarkdaUppsala University, Sweden. With
UPPAAL, the behavior of timed systems can be gieglyi modeled using the timed automata
formalism extended with various modeling featufes. example, concurrency and C-like
functions and data structures are added to makeadtically expressive and user-friendly. This
tool consists of a graphical editor and simulaamd a model-checker. This checker performs an
exhaustive symbolic analysis of the model and glesvieither a proof that the model satisfies a
property, or a counter-example including a tracaatiions and delays exemplifying how the
property is violated. It has been applied succélgdfma variety of industrial cases.

Recently, this tool was extended with new functitordest generation and controller synthesis.
The ultimate goal of these updates is to enhand@AAR as an integrated tool suite for the
MBD development lifecycle of embedded real-timeteys

CcBMC

CBMC is a bounded model checker for software wveatfon. It can take as input a low-level
ANSI-C program and, formally check safety propesrtike the correct usage of pointer
constructs, array bounds and user-provided C ams&rGiven a prograrg, a propertyP and a
boundk, the verification includes three steps: i) unmailik times all loops structures in C; then
i) translating the resulting program without loagsd property into a Boolean formula in
Conjunctive Normal Form (CNF); and finally (iii)\ghg the result to a SAT solver like MiniSat.
If the SAT solver returns false, the property holatherwise the property does not hold within
the boundk. This tool is developed and maintained by the FdMerification Group from
Oxford University, UK. This tool can be used toeditly verify safety-critical properties in the
implementation source code and indirectly verifghhievel language models like Simulink after
being transformed into C code.

Conclusions

The paper describes the introduction of advanceification and validation techniques to a real-
time embedded systems course. Since embeddedmeatdmputer systems are becoming more
popular their reliability is of paramount importandhe paper presents the Model-based design
(MBD) methodology, especially model-based testing emodel checking techniques that have
great potential for the rigorous verification of eelded real-time systems. Two verification
tools are also exposed to students to help thdipeuthese tools for conducting research and for
solving practical problems at work.

407

References

=

The DECOS European projebttp://www.decos.at

Brillout, A., He, N., Mazzucchi, M., Kroening, DRPurandare, M., Rummer, P., Weissenbacher, G. “dutat
based test case generation for Simulink modelspréceedings oformal Methods for Components and

Objects (FMCO). LNCS, vol. 6286, pp. 208-227. Springer)20

He, N., Rummer, P., Kroening, D. “Test-case gemamdbr embedded Simulink via formal concept anialys

In the proceedings d@besign Automation Conference, 2011.

A. F. Donaldson, N. He, D. Kroning, P. Rummer. ‘fiigning test coverage metrics: a case study in
equivalence checking using k-induction”. In prodegd ofFormal Methods for Components and Objects
(FMCO). Springer, 2012.

E. M. Clarke, Jr., O. Grumberg and D. A. Peled, ddbChecking”, MIT Press, 1999, ISBN 0-262-03270-8.
Michael D. Ernst. Static and dynamic analysis: $gpeand duality. In WODA: ICSE Workshop on Dynamic
Analysis, pp 24-27, 2003.

8. Patrice Godefroid, Nils Klarlund, and Koushik nS®&DART: directed automated random testing. In
Proceedings of the ACM SIGPLAN 2005 Conference mgfRamming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005.

UPPAAL tool, http://www.uppaal.com/

E. Clarke, D. Kroening, and F. Lerda. A tool foecking ANSI-C programs. In TACAS, pages 168-176.
Springer, 2004.

408

http://www.tcpdf.org

