S Proceedings,
4E> The 2013 ASEE North Midwest Section Conference, ASEE-NMWSC2013-0040
“a October 17-18, 2013, Fargo, North Dakota.

Experience of Teaching Embedded System Design using FPGAs

Department of Electrical, Computer Engineering &adhnology
Minnesota State University, Mankato, MN 56001
Han-Way Huang, han-way.huang@mnsu.edu
Nannan He, nannan.he@mnsu.edu

Abstract

An embedded system is a product using one or nwrgugters as its controller. Traditionally,
the controller of an embedded system is an offstiedf microcontroller from microcontroller
vendors. However, an off-the-shelf microcontrotieay not provide the required peripheral
functions or cannot achieve the desired performaageired by the application. In this situation,
the embedded system designers may either desigrottre special microcontroller chip or
configure the FPGA chips to meet the functional pedormance requirement. Designing a
dedicated microcontroller chip is only justified &hthe embedded system is going to be
duplicated many million copies. When the volumaas high enough or time-to-market is very
tight to justify the design of a dedicated microicoler, configuring an off-of-the shelf FPGA
chip becomes the only viable approach.

An FPGA-based embedded system design approacs wititselecting the processor core,
amount of on-chip memory, and peripheral modulesifthe FPGA vendor library using the
design software and then generates the HDL filedbacribes this controller module. The
second step is to write an upper-level module staimtiate the controller module generated in

the previous step and also instantiate certainiaieeripheral functions provided by third

parties or from the designer’s own library to miet performance requirement. The third step is
to write the application software in C or C++ laage to implement the embedded functions.
This paper describes our experience of teachirapdimed senior/graduate course on embedded
system design using this approach in our electandlcomputer engineering program.

Microcontroller features

The heart of an embedded system is the microctertr@lepending on the number of bits that
the processor can manipulate in one operationnthecontroller can be classified as 8-bit, 16-
bit, 32-bit, and so on. In general, 8-bit and 16nticrocontrollers are targeted toward simpler
applications that do not require high performanbergas 32-bit microcontrollers are targeted
toward more complicated applications that requiteimhigher performance. The usefulness of a
microcontroller is greatly determined by the peefdis added to the chip. Over the years,
microcontroller peripheral functions to a largeemtthave been standardized. For example, the
following peripherald® 2 3 4lare common to most microcontrollers:

345

= Parallel /0 ports: An I/O port consists of a sel/@ pins (8, 16, or even 32) and
associated registers. 1/0 pins are used to dridel#vices such as light-emitting diodes
(LEDs), seven-segment displays, liquid crystal ldigp (LCDs), key pads, keyboards,
and so on.

= Timer functions: Timers are often used to createtdelay, measure signal parameters,
generate waveforms to be used in control functiand,keep track of time-of-day.

» Serial interfaces: The most common serial inteanelude universal synchronous
asynchronous receiver and transceiver (USART)akperipheral interface (SPI), inter-
integrated circuit @C), local interconnect network (LIN), controllerearnetwork (CAN),
universal serial bus (USB), and so on. A microcaligr uses these interfaces to
communicate with peripheral devices or another ociontroller.

» Analog-to-digital converter (ADC): ADC allows theierocontroller to measure non-
electric physical quantities such as pressure, tilyntemperature, weight, and so on.
The analog-to-digital conversion results are regme=d in digital values. The result of
the measurement can be used to carry out certatnotoperations.

» Digital-to-analog converter (DAC): A DAC convertglaital value into a voltage. DAC
is used to generate waveforms, playback musicsarah.

»= Analog comparator: This function is often used étedt whether certain signal’s voltage
exceeds a predefined threshold value.

= Interrupt controller: Peripherals of the microcatigrs use interrupts to request attention
from the CPU. The CPU executes a short prograne(taiterrupt service routine) in
response to an interrupt request. With the intérdwgction, the CPU can continue to
perform useful operations while peripherals areybagheir operations.

= Direct memory access (DMA): DMA is a data transfethod in which the CPU does
not execute instructions to perform the actualgfan The CPU sets up the source
address, destination address, and transfer codrieathe DMA controller carry out the
actual transfer. DMA transfer is much more effitidran data transfers performed by the
CPU.

= Watchdog timer: Watchdog timer is implemented ttedesoftware errors.

= Sleep modes: Sleep modes are added to reduce pomsrmption whenever the
microcontroller is not actively perform any usefuhctions.

In addition to these common peripheral functiongratontroller vendors may also implement
other specialized peripheral functions to gain atlvge over their competitors. When teaching a
microcontroller course, it is desirable to covenay peripheral functions as possible. Readers
must be aware that common peripherals are desgminplemented differently in each
microcontroller family even from the same company.

TheWord-length of the microcontroller

346

The number of bits that a microcontroller can matdfe in one operation is referred to as the
word length of the microcontroller. A 32-bit CPU requires mangre transistors timplement
than an 8-bit or 16-bit CPU and, therefore, consimere power. However, after adding many
peripheral functions and the on-chip flash memar$2-bit microcontroller may not consume
much more power than an 8-bit or 16-bit microcoliero

The 8- and 16-bit microcontrollers may have someathge in program size for simple and non
computation-intensive applications. However, wheydarate to high arithmetic computation
operations are required for the application theiiB2Znicrocontrollers have significant
advantage in program size over the 8- and 16-lmtonontrollers. One 32-bit multiplication or
32-bit divide operation is performed by executimg anultiply or divide instruction in the 32-bit
microcontroller. For the same 32-bit multiply ovidie operation, an 8- or 16-bit microcontroller
is required to call a subroutine. For this type@pplications, the 8- and 16-bit microcontrollers
may consume more power because they require magetidime to complete the operations and
hence will be busy at a much higher percentagena tompared with the 32-bit microcontroller.
The microcontroller can be put to sleep and saveepavhen it is not busy performing useful
work.

The 8- and 16-bit microcontrollers do not have @advantage over the 32-bit microcontroller
for the same amount of flash memory and the sameauof pins. For example, the 8-bit Atmel
ATMEGA1280 (with 100 pins and 128 kB flash memaig/jnore than twice as expensive as the
32-bit SAM4L2C (with 100 pins and 128kB flash mewjor

Considering the factors of power consumption, paogsize, and cost, 8-bit and 16-bit
microcontrollers are more suitable for simple aggiibns. To give students more options when
they enter the job market, we teach both the 8abil6-bit) and 32-bit microcontrollers.

Sour cesfor microcontrollers

When choosing a microcontroller as the controkertie embedded system, the designer has
three options:
= Buy the off-the-shelf microcontroller from the dibutor or directly from the
manufacturer. This approach involves the leasigtesifort and is also the least
expensive approach. If the chosen microcontroldéises the design specification, this
approach would have the shortest time-to-markepa#gntly, most embedded systems
use one or multiple off-the-shelf microcontrollasstheir controller.
= Configure an FPGA chip into a microcontroller arse it in the embedded system. The
greatest advantage of the FPGAs is its configutgbilhe user can configure the FPGA
on-chip resources to accelerate certain operatlElP&As are used as the controller of an
embedded system whenever no off-the-shelf microothet can satisfy the performance

347

requirement of the applications and the voluménefambedded system to be produced is
not high.

» Design and fabricate a customized microcontrolléis is the most expensive and risky
approach. However, the designer may adopt thisoagprwhenever the volume of the
embedded products is extremely high (for exampbmymillions) and no off-the-shelf
microcontroller meets the performance requiremfiten adopting this approach, the
company often wants to minimize the risk by liceigsa well-established processor core
such as ARM or MIPS and add certain peripheralpecial circuitry appropriate to the
application. The most famous example is probaldyARM Cortex-A processors
designed by Apple for its cell phones and tabletipcts.

Overview of the FPGA

A field programmable gate array (FPGA) chip consists of an array of programmabte (
reconfigurable) logic components calldddic blocks’ and a hierarchy of reconfigurable

inter connects that allow the logic blocks to be wired togetHaifferent company would use
different names for the logic block. The logic lkeanay be configured to perform complex
combinational functions, or merely simple logiceglike AND and XOR. In most FPGAs, the
logic blocks also include memory elements, whicly fo@ simple flip-flops or more complete
blocks of memory.

The programming of the FPGA chip is carried outriygcting a bit stream to configure every
used logic block inside the FPGA chip. The prograngnpoint inside the FPGA chip can be
implemented by using the SRAM cell or fuse. WherABRcells are used, the FPGA chip can
be reconfigured (or reprogrammed) over and ovewéder, when fuses are used, the FPGA
chip is one-time programmable only. Fuse-based FPlae better performance (in terms of
propagation delay) when using the same semicondtextbnology. It appears that Actel
(acquired by MicroSemi) is the only company that Baer used the fuse technology as the
programming technology for the FPGA chip. When SR&Msed as the programming method,
the programming information will be lost whenevemer is turned off. A separate chip (called
configuration chip) is required to hold the programming information the FPGA chip.
Whenever power is turned on, the FPGA chip shiftthe programming information from the
configuration chip to configure itself. This prosasay take many milliseconds depending on
the length of the bit stream.

Some FPGAs have analog features in addition tdadlifyinctions. The most common analog
features are programmable slew rate and drivegitieon each output pin, allowing the engineer
to set slow rates on lightly loaded pins that waatlterwise ring unacceptably, and to set
stronger, faster rates on heavily loaded pins gh-Bpeed channels that would otherwise run too
slowly. Another relatively common analog featuréiferential peripheral comparators on input

348

pins designed to be connected to differential ceklnm few mixed signal FPGAs have
integrated peripheral analog-to-digital conver(@&BCs) anddigital-to-analog converters
(DACs) with analog signal conditioning blocks alliogy them to operate as system-on-a-chip.

The first commercial FPGA product XC2064 was introed by Xilinx in 1985. This device has
only 64 configurable logic blocks (CLBs). Each ChBs two 3-input lookup tables (LUTS).
Xilinx continued unchanged and quickly growing fra®85 to mid-1990s, when competitors
sprouted out, taking away Xilinx’s market share. @3, Actel has about 18 percent of the
FPGA market. The 1990s were an explosive perioFRBAs, both in sophistication and the
volume of production. In the early 1990s, FPGAsengimarily used in communications and
networking. By the end of the decade, FPGAs fotnedr tvay into consumer, automotive, PC,
and industrial applications. However, communicaiand networking are still the two largest
markets for FPGA products.

The FPGA market is dominated by Xilinx and Alterahv9% and 40% market share,
respectively. The remaining market is divided byesal smaller companies including Lattice
semiconductor (6%) and MicroSemi (4%, acquired Rict010)0].

To attack the embedded system market, FPGA congpaffered the soft processor cores that
can be implemented using the FPGA logic. Nios licigBlaze, and Mico32 are the soft
processor cores from Altera, Xilinx, and LatticenB&nductors, respectively. Soft core
processors are described in one of the hardwargigesn languages such as Verilog and
VHDL. To use the soft core processor, the FPGA uses the software to invoke the library to
implement these processor core and peripheral raodid the FPGA chip and uses it as the
controller of the embedded system. We are usirgyapproach to teach students.

In the last few years, major FPGA vendors also idean embedded processor inside the FPGA
chip. In this approach, the FPGA chip consistogfd blocks, interconnects and an embedded
microprocessor. Xilinx’s Zyng-7000 includes a 1.BLdual-core Cortex-A9 processor. Altera’s
Arria V FPGA includes an 800 MHz dual-core CorteQ-WPCore. The Actel SmartFusion
devices incorporate a Cortex-M3 hard processor @aodeADC and DACs.

Design flow of embedded system using FPGA with soft cor e processor

Design embedded system using the FPGA with a softa@re processor as its controller has
two major parts:

Part 1

Configure the FPGA into a microcontroller. To destihe FPGA vendor provides a software
package that allows the user to select the processe and appropriate peripherals such as

349

timers, serial interfaces, and so on and genenatélDL descriptions for them. The user then
write a short HDL description (in Verilog or VHDIt) instantiate the HDL description

generated previously. The resultant HDL file istltempiled to generate the bit stream that can
configure the FPGA chip into the desired microcolieér. The processor core and peripherals are
described in either Verilog or VHDL and placed e library and are calldatellectual

property (IP) cores. These IP core descriptions are redgad cannot be modified by the user.
The users can also write their own IP cores if theynot available from the FPGA vendor.

Keep in mind that the reason for using this apgnoadecause there are performance
requirements that cannot be met by the off-thetshelrocontroller.

Part 2

Develop application software (often calliedmware) to be executed by the microcontroller
implemented using the FPGA. This step is no difiefeom using the off-the-shelf
microcontroller. The designer will use an integdatievelopment environment (IDE) to enter,
compile, and debug the program. An IBE: 4 consists of a text editor, assembler, compiler,
simulator, debugger, and device drivers. Onceitherfare has been debugged, it must be
programmed into a nonvolatile memory so that it ba& available for the CPU to access and
execute. Xilinx, Altera, and Lattice Semiconduadroffer IDEs based on the popular freeware
Eclipse IDE.

Our experience

We taught embedded system design using the FP®8tkosenior and graduate students as an
elective. These students have different backgro8nthe have learned VHDL or Verilog before.
However, more than half of the class never leaargdhardware description language. All of the
students in the class have learned some type obaantroller. With this background in mind,

we decided to teach Verilog and a soft core prardsshis class. Our goal is to enable students
to use Verilog to design digital systems using FP&BA to implement embedded systems using
the FPGA.

We have used the design tools from Xilinx, Altexad Lattice Semiconductor on teaching

digital system courses in the last fifteen yeatse @iesign tools from these three companies are
all very good. However, Altera seems to have trst demo boards for lab experiments. When
using Lattice Semiconductor’s design tools, we glesil our own demo kit using the CPLD

chips from Lattice Semiconductor. According to eMperience, using programmable logic
devices (including FPGA and CPLD), hardware desionganguages (VHDL or Verilog), and
design tools in teaching digital system coursesdhaays increase students enthusiasm in the lab
projects. We have seen many students spent exira hrothe lab in order to get their lab
assignment done. When we taught introductory digeaign course, we always assign students
to do the first few lab assignments by using tradal TTL chips, which requires a lot of wiring

350

and causes a lot of frustration to students. Howefter shifting to programmable logic devices
and hardware description language and CAD toalslesits become very happy working on the
lab assignments.

Teaching embedded system design using the FPGAeantling digital system design are not
quite the same. Additional design tools are needgdin, we decide to choose the soft core
processor from one of the top FPGA vendors Xililkkera, and Lattice Semiconductor. To
choose among Microblaze, Nios I, and Mico32, wesidered the following factors:

= Development software support

= Availability of tutorials and books for the devetopnt software

= Availability of affordable demo boards for lab peojs

= Availability of lab projects

After comparing these factors, we chose Altera'ssNI soft core processor for our course.

Nios Il is a soft-core processor targeted for Alte=PGA devices. As opposed to a fixed
prefabricated processor, a soft-core processassribed in HDL codes and then mapped onto
FPGA'’s generic logic blocks (logic element (LE)Aftera’s term). A soft-core processor can be
configured and tuned by adding or removing featorea system-by-system basis to meet
performance or cost goals.

The Nios Il processor follows the basic design @gles of a reduced instruction set computer
(RISC) architecture and uses a small, optimizeasetstructions similar to those supported by
the MIPS processor. Its main characteristics are:
» Load-store architecture—Only load and store ingilbas can access memory. Arithmetic
and logic instructions operate only on registeis iammediate values.
» Fixed 32-bit instruction format
= 32-bit internal data path
» 32-bit address space
= Memory-mapped I/O space—Peripheral devices sharedime memory space with
memory components.
= 32-level interrupt requests
= 32 general-purpose registers

There are three basic versions of Nios II:
= Nios lI/f: The fast core is designed for optimatfpemance. It has a 6-stage pipeline,
instruction cache, data cache, and dynamic brarextigtion.
* Nios ll/s: The standard core is designed for sia# while maintaining good
performance. It has a 5-stage pipeline, instruateche, and static branch prediction.

351

» Nios ll/e: The economy core is designed for optisiaé. It is not pipelined and contains
no cache.

TheQuartus|l package is used to configure the FPGA into a mammtroller. After starting the
Quartus I, the user invokes tlsys tool from theT ools menu to select the processor, memory,
peripherals, and so on and request Qsys to gertheat¢DL (Verilog or VHDL) description for
the resultant microcontroller. The user then cieatproject and instantiate the generated
microcontroller in it. After that, the user comilthe project and generates the bit stream for
configuring the FPGA chip. A screen of Qsys afaling several components but before adding
interconnections is shown in Figure 1.

-
File Edit System View Tools Help
Companent Library | systemcontents | address Map | Clock Settings | Project Settings | Instance Parameters | System inspector | HOL Exampie | Generation
% dF |use C.. MName Description Export Clock Base En
Z x cik_0 Clock Source
f:: nios2_gsys_0 Nios || Processor unconnected 0:x0000_0800 [P
+-Interlaken 2 , =pi_0 SPI {3 Wire Serial) unconnected
@-Pel = itag_uart_0 JTAG UART unconnected
[-Rapidio a pio_0 PIO (Paraliel VO) unconnected
[#-5D1 L - pio_1 PIO (Parallel 'O} unconnacted
=1-Serial timer_0 Interval Timar
= T
% Aftera 16550 Compatible UART - UART {RS-232 Serial Port}
“ Avalon-5T JTAG Interface ?
% Avalon-ST Serial Peripheral Inter|
@ JTAG UART =
5 SPI(3 Wire Serial)
: O3 UART (RS-232 Serial Port)
[#-Transceiver PHY
[il-Memories and Memory Controllers.
[#-Merfin Components
EI- l.l_lcrucummllar Peripherals
i L. @ Aftera Avalon Mutex
ipherals
ug and Performance
vy =
[| :
Hewe W Add...
Messages ‘
=
Description Path @ I
S 16 Errors -
0 Reset slave is not specified. Please select the reset slave System.nios2_gsys_0 i
BT PO T X
16 Errors, 16 Warnings
L

Figure 1. A snap shot of Qsys after adding several components but without adding connections

The next step is to invoke tiNdos || Build Toosfor Eclipse from the tools menu of Quartus 1.
The user then enters his/her assembly or C progiasemble/compile the program. To write
application programs in assembly or C, the usexdsired to read the related documentations
provided by Altera. After eliminating syntax andvemtics errors, the user invokes the
programming tool to download the configuration fed the firmware into the FPGA chip on

the demo board for debugging. Debug commands susbtting breakpoints, adding variables to
watch list, execute to cursor position, and soamlre invoked to debug the program.

For the university program customers, Altera alsivjgles the software callesltera M onitor

Program to help the user to develop his/her programs semably or C to be executed on the
demo board (for use with the DE-series boards).udes can enter, assemble/compile, and

352

download his/her program onto the DE demo boariatgukis program. The Monitor program
also provides some simple debugging functions sgckingle stepping through the program,
setting breakpoints, and examining register and ongrrontents.

Altera provides several well-designed FPGA boaodsu$ers to learn how to use their FPGA
design software and the device. Among them, the &lLDE2-115 are most suitable for
learning the Altera design software and experinmgnivith the FPGA devices. The DEL1 is less
expensive and is based on the Cycle Il device velsettee DE2-115 is based on the Cyclone IV
device with more hardware resources. Both the DilIRE2-115 have been used by many
universities worldwide in teaching digital desigrdacomputer organization courses.

Altera provide a tutorial on Qsy& and lab assignments for users to get startedemihedded
system design using the Nios Il soft processortlia@oks are also available for using the Nios Il
processol’ 8,

We spent about four weeks on teaching Verilog @ogning and get students to work out a few
design projects using the DEL1 kits. After that aeght students to start from a very simple Nios
Il microcontroller configuration and write assemhlyd C programs to control its operation. We
let students to work out a subset of the labs pexviby Altera. Most students did not have
difficulty to get those lab assignments to workc8ese of the need to teach Verilog, we didn’t
have time to teach students to design their owipperal functions and integrate with the Nios
processor. We plan to find some way to achieveithike future.

Conclusion

Embedded system design using the FPGA is moreecigatlg than using the off-the-shelf
microcontroller because more work is required. gshre FPGA provides an advantage
unavailable from the off-the-shelf microcontrollére user can dedicate some hardware resource
on the FPGA to accelerate certain operations td thegerformance requirement of the target
application. Instructors of this course should mearstudents about this throughout the course.
The instructor should also teach students to lbamto write their own intellectual property
cores.

Teaching embedded system design using FPGA prothée®llowing advantages to students:
» Familiarizing with digital design skills using ooéthe hardware description languages.
= Exposure to a new embedded system design alteenativ

Because designing embedded system using this ajpiosolves many additional steps than
using the off-the shelf microcontroller, it is inmpant to start with a simple configuration and get
it to work to build up confidence. After buildingsaccessful simple system, the user can then
add a few more peripherals into the system antbtget it to work. In this manner, the user can

353

learn this embedded system design approach suattgskf a semester time frame, the
instructor may not have time to also teach studentiesign their own peripheral functions.

It is important to remind students the reason &sighing embedded system using the FPGA
instead of the off-the-shelf microcontroller—thare some performance requirements that
cannot be met by using the off-the-shelf microcolidr.

References

1. Atmel, “SAMAL Data Sheet”, Jul, 2013.

2. Han-Way Huang, “The Atmel AVR Microcontroller MEG&nd XMEGA in Assembly and C”, Delmar
Cengage Learning, Clifton Park New York, 2013.

3. Han-Way Huang, “Embedded System Design with theS@80Cengage Learning, Stamford, Connecticut,
2009.

4. Han-Way Huang, “HCS12/9S12 An Introduction to Saftevand Hardware Interfacing™“2dition,
Delmar Cengage Learning, Clifton New York, 2010.

5. Jeff Johnson, “List and Comparison of FPGA CompsiniePGA Developer, Jul, 2011.

6. Altera, “Introduction to the Altera Qsys Systemegtation Tool”, May, 2012.

7. Pong P. Chu, “Embedded SoPC Design with NIOS ItBssor and Verilog Examples”, Wiley, Hoboken,
New Jersey, 2012.

8. Pong P. Chu, “Embedded SoPC Design with NIOS ItBssor and VHDL Examples”, Wiley, Hoboken,

New Jersey, 2011.

354

http://www.tcpdf.org

