
Converting a Microcontroller Lab From The

Freescale S12 to the Atmel ATmega32 Processor

Christopher R. Carroll

University of Minnesota Duluth

ccarroll@d.umn.edu

Abstract

During the summer of 2013, the laboratory supporting the microcontroller course at the

University of Minnesota Duluth was completely re-implemented. For the last several years, the

processor that has been used was the Freescale S12, a popular 16-bit microcontroller with a long

ancestral history
1
. The recent popularity of the Atmel AVR series of microcontrollers, as used in

the Arduino microcomputers, for example, has prompted a change in the lab to use Atmel’s

ATmega32 microcontroller, an 8-bit member of the AVR family of microcontrollers
2,3

. The new

processor has a fundamentally different architecture than that used in the past, but the

input/output resources available are much the same. This paper addresses issues that will be

faced in the conversion when the course is taught with the new lab hardware for the first time in

the Fall.

At the very fundamental level, the S12 and ATmega32 differ in architecture. The S12 is a

Princeton architecture computer (single memory for both program and data), while the

ATmega32 is a Harvard architecture computer (separate program and data memories). The S12

is clearly a CISC machine (Complex Instruction Set Computer) while the ATmega32 is clearly a

RISC machine (Reduced Instruction Set Computer). These differences will affect how the

microcontroller course is taught when it is offered in the Fall using this new lab. Fortunately,

however, the collection of input/output devices in the AVR microcontrollers mimics closely

what is found in the S12, so that many of the existing lab exercises will be used again with only

minor tweaking.

This paper will discuss what has been done and what is planned for the updated microcontroller

course. The course will be offered in the Fall, 2013, semester, using this new lab hardware for

the first time.

Background

For more than five years, the microcontroller course in the Electrical Engineering department at

the University of Minnesota Duluth has used the Freescale MC9S12DP256 microcontroller (S12,

for short) as the foundation for lab exercises. This is a 2
nd

-year required course in the Electrical

Engineering program. The prerequisite for this course is Digital Logic, where students learn

fundamentals of digital circuit hardware design. This course is all about software, teaching

students to program in assembly language, with the microcontroller as the vehicle.

Formerly, the microcontroller course has used Wytec’s Dragon-12 board (Figure 1) to provide

the user interface for the S12, including a speaker, 4-digit 7-segment multiplexed display, 2x16

ASEE-NMWSC2013-0025

194

character alphanumeric Liquid Crystal Display (LCD), serial interfaces, discrete LEDs and

switches, and more. The S12 is a 16-bit microcontroller with a rich instruction set and a very

complete collection of input/output

devices built-in that together provide an

excellent basis for a variety of lab

assignments. The S12 is a current

product, and has a long ancestry that

includes the popular 68HC11 8-bit

microcontroller, and even extends back

to the original Motorola 6800

microprocessor. The S12 has served

admirably as the foundation for the

microcontroller course’s lab experience

for many years.

In recent years, a new family of microcontrollers, the AVR family from Atmel, has emerged, and

has become popular due to its use in the convenient Arduino family of microcomputers. The

Arduino microcomputers are easily incorporated into student senior projects, and are easily

programmed in high-level languages such as C or Pascal. The AVR family includes a wide

variety of processor capabilities, from simple components housed in 8-pin packages to powerful

devices in 40-pin packages or larger. Because students have used Arduino microcomputers so

often, there was considerable interest and pressure to update the microcontroller course,

switching to an AVR processor to provide students with background knowledge for their project

development.

Fortunately, a new development board for AVR processors is available, the EasyAVR version 7

from MikroElektronika (Figure 2). The EasyAVR board features the ATmega32 microcontroller

from the AVR family, and includes many

of the same resources as the Dragon

board (speaker, 4-digit 7-segment

multiplexed display, 2x16 character

alphanumeric LCD, serial interfaces,

discrete LEDs and switches, etc.) and

also includes a USB port that eases

connection to modern personal

computers, and a 128x64 Graphic Liquid

Crystal Display (GLCD) with touch-

screen capability that adds an additional

resource to support new lab exercises.

This EasyAVR board includes

programming hardware that allows easy

configuration of any of the AVR-family

microcontrollers that are packaged in DIP

packages, making the board a great

resource for students in senior project

development.

Figure 1. Wytec’s Dragon-12 board

Figure 2. MikroElektronika’s EasyAVR 7.0 board

195

Fundamental Differences

The S12 and ATmega32 microcontrollers are both current products from their respective

manufacturers (Freescale and Atmel) and both support systems that can be embedded easily in

projects. However, the two processors have several very fundamental differences that will affect

how the microcontroller course is taught, and present some interesting instructional challenges.

First, the S12 is a 16-bit microcontroller, meaning that the fundamental size of operands that are

manipulated in a single instruction is 16-bits. The ATmega32 is an 8-bit processor, which in

some cases makes it less powerful from a computational viewpoint. However, the 8-bit nature of

the ATmega32 actually will ease the most common difficulty faced by students, namely knowing

whether registers in the processor are 8-bit or 16-bit registers, and knowing whether a particular

instruction uses 8-bit or 16-bit operands. Confusion on this point has been the single most

common difficulty faced by students when learning to use the S12 processor. The 8-bit nature of

the ATmega32 should eliminate this source of confusion. Processing power is not an issue with

the kinds of applications students face in the microcontroller course, so the 8-bit nature of the

ATmega32 over the 16-bit S12 is actually a pedagogical advantage.

Second, the S12 is clearly a Complex Instruction Set Computer (CISC) device, whereas the

ATmega32 is clearly a Reduced Instruction Set Computer (RISC) device. The debate among

computer architects as to whether CISC or RISC designs lead to better performance has no clear

winner. In some applications, CISC excels, whereas in other applications RISC wins. Although

no processor is 100% CISC or RISC, the S12 and the ATmega32 display many of the

characteristics of the two extremes. The S12’s instruction set includes many exotic instructions

meant for specific applications. Notable are the fuzzy logic instructions, and the table

interpolation instructions, that perform complex calculations behind the scenes. By contrast, the

ATmega32’s instruction set includes only simple, straightforward instructions that each perform

very limited tasks. CISC proponents argue that their philosophy is best because they can use

their complex instruction set to accomplish some goal with only a few instructions, thus

maximizing performance. RISC proponents admit that their philosophy will require more

instructions to accomplish the same goal, but because RISC instructions are simple and

streamlined, the clock rate can be boosted on a RISC processor so that the overall performance

of a RISC solution, although longer, is still better. Who wins? It depends on the application.

The CISC S12 processor includes just 4 general purpose registers (some 8-bit, some 16-bit)

whereas the RISC ATmega32 processor includes 32 8-bit general purpose registers, another

characteristic that often distinguishes CISC and RISC processors. From an instructional point of

view, it will be easier to describe fully the instruction set of the ATmega32. However, the

challenge is that student programs will be longer and harder to grade with the larger register set.

Third, the S12 is a Princeton architecture processor, whereas the ATmega32 is a Harvard

architecture processor. The distinction lies in the structure of memory. Princeton architecture

devices use a single memory structure to store both program and data. Harvard architecture

devices use separate memory structures for program and for data. The Princeton architecture is

simpler in hardware, but leads to what is known as the von Neumann bottleneck in performance

as the processor has to share time accessing the same memory for both instruction fetch and data.

196

Advocates for the Harvard architecture tout better performance because accesses to the program

and data memory are independent and can be simultaneous. Harvard architectures are somewhat

clumsy in program development environments, because it is impossible or at least not easy to

modify program memory during execution of a program. Self-modifying code (a no-no among

computer scientists anyway!) is generally not possible in Harvard architectures, for example.

Regardless, with appropriate development-system design, it is possible to implement a system

that allows program development using Harvard architecture processors, and the EasyAVR

development board accomplishes that well. The challenge here is a need to rely on industrial

tools for program development, rather than using custom tools that Princeton architectures allow.

Many Similarities

The S12 and the ATmega32 microcontrollers share many similarities, despite their fundamental

differences noted above. This should ease the transition in the course from one processor to the

other, and should allow most of the lab exercises used formerly with the S12 to be adapted easily

for the ATmega32. Generally, the ATmega32 contains nearly the same types of resources as the

S12, although generally the S12 contains more of each feature.

In the memory address space, both processors include the same types of capabilities (Figure 3).

As can be seen in the figure, the ATmega32 includes the same features as the S12, but in each

case the S12 contains more of each feature.

The input/output capabilities of the S12 and the ATmega32 are also very similar, although again

the S12 generally contains a larger quantity of the features offered. Figure 4 shows the

input/output features included in each of the processors.

Feature MC9S12DP256 ATmega32

 Static RAM 12K bytes 2K bytes

 EEPROM 4K bytes 1K bytes

 Flash memory 256K bytes 32K bytes

 Internal input/output 1K bytes 64 bytes

Figure 3: Memory in the S12 and ATmega32

Feature MC9S12DP256 ATmega32

Parallel ports ten: 4-, 7-, and 8-bit four: all 8-bit

Timer one three

Input Capture eight channels one channel

Output Compare eight channels four channels

Pulse Width Modulation eight channels three channels

Asynchronous Serial I/O two systems one system

Serial Peripheral Interface three systems one system

Inter-Integrated Circuit I/O one system one system

Controller Area Network five systems --

Analog to Digital Conversion sixteen analog inputs eight analog inputs

Figure 4: Input/Output in the S12 and ATmega32

197

The comparisons for memory and input/output detailed in Figures 3 and 4 reflect the capabilities

of the specific processors used on the Dragon-12 and EasyAVR development boards. In each

case, many other members of the processor family exist, with varying amounts of memory and

input/output capabilities, so either processor family is likely to include a family member that

meets the needs of a particular application. In the case of the microcontroller lab application

addressed here, the S12 capabilities far exceed what is required, and many of the I/O capabilities

are wasted. The ATmega32 is a better match for the needs of the microcontroller lab.

Plans

The microcontroller lab is now equipped with nine stations based on EasyAVR development

boards, each with associated personal computers. The old lab implementation contained stations

based on the Dragon-12 boards which were networked via serial terminal lines to a single

personal computer host running multi-user linux. The new environment makes each station self-

contained. Station maintenance is harder now, since each station has its own personal computer,

but the old implementation suffered from a dependence on a single computer. If that one

computer failed, the whole lab shut down. The new implementation will be more reliable.

Development of new lab exercises is underway. Many of the exercises will be similar to old lab

assignments because of the similarity of the input/output resources of the ATmega32 to the S12’s

features. Some new capabilities, such as the GLCD graphics display and touch screen, will

warrant new lab experiments to make use of those devices.

Looking ahead, the experience students will gain using the ATmega32 microcontroller in this

required microcontroller course will encourage them to consider AVR processors in future work,

notably in their senior project designs. This new microcontroller lab using the EasyAVR

development boards will serve as a valuable resource for students using AVR processors, as it

provides the hardware and software needed to configure AVR devices for specific applications.

Summary

The laboratory supporting the microcontroller course at the University of Minnesota Duluth has

been redesigned to use a processor from Atmel’s AVR microcontroller family.

MikroElektronika’s EasyAVR development board, using the ATmega32 microcontroller,

provides access to the device’s resources and includes convenient input/output interfaces for use

in lab experiments.

References

1. Pack, Daniel J. and Steven F. Barrett, Microcontroller Theory and Applications: HC12 & S12, Pearson/Prentice

 Hall, Upper Saddle River, NJ, 2008.

2. ATmega32 User Manual, Atmel Corporation document 2503Q-AVR-02/11, 2011.

3. Margush, Timothy S., Some Assembly Required: Assembly Language Programming with the AVR

 Microcontroller, CRC Press, New York, NY, 2012.

198

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

